[go: up one dir, main page]

He et al., 2016 - Google Patents

Greatly enhanced magneto-dielectric performance of the Ni0. 5Zn0. 5Fe2O4/polyvinylidene fluoride composites with annealed ferrite powders for antenna …

He et al., 2016

Document ID
4109548981116312775
Author
He L
Liu J
Xie H
Zhang C
Publication year
Publication venue
Journal of Materials Research

External Links

Snippet

A series of Ni0. 5Zn0. 5Fe2O4 (NZO)/polyvinylidene fluoride (PVDF) composites were prepared and studied for their potential application as magneto-dielectric antenna substrate materials. The NZO ferrite powders were synthesized by the solid-state reaction method and …
Continue reading at link.springer.com (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Metals or alloys
    • H01F1/20Metals or alloys in the form of particles, e.g. powder
    • H01F1/22Metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • H01F1/0081Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures in a non-magnetic matrix, e.g. Fe-nanowires in a nanoporous membrane

Similar Documents

Publication Publication Date Title
Li et al. Emerging magnetodielectric materials for 5G communications: 18H hexaferrites
Sözeri et al. Magnetic and microwave properties of BaFe12O19 substituted with magnetic, non-magnetic and dielectric ions
Wang et al. Low-loss and temperature-stable negative permittivity in La0. 5Sr0. 5MnO3 ceramics
Hou et al. Microwave absorption properties of single-and double-layer absorbers based on electrospun nickel–zinc spinel ferrite and carbon nanofibers
Wang et al. Synthesis of polyaniline nanorods and Fe3O4 microspheres on graphene nanosheets and enhanced microwave absorption performances
Rusly et al. Microwave absorption properties of single-and double-layer coatings based on strontium hexaferrite and graphite nanocomposite
Praveena et al. Improved microwave absorption properties of TiO2 and Ni0. 53Cu0. 12Zn0. 35Fe2O4 nanocomposites potential for microwave devices
Thakur et al. Enhancement in Dielectric and Magnetic Properties of ${\rm In}^{3+} $ Substituted Ni-Zn Nano-Ferrites by Coprecipitation Method
Polley et al. Synthesis and characterization of BaFe12O19-CoFe2O4 ferrite composite for high-frequency antenna application
Babu et al. Effect of zinc substitution on the structural, electrical and magnetic properties of nano-structured Ni0. 5Co0. 5Fe2O4 ferrites
Martinson et al. Effect of Bi2O3 contents on magnetic and electromagnetic properties of LiZnMn ferrite ceramics
Gan et al. Influence of microstructure on magnetic and dielectric performance of Bi2O3-doped MgCd ferrites for high frequency antennas
Vinaykumar et al. Synthesis and characterization of Ba2Co2Fe12O22–NiFe2O4 ferrite composites: a useful substrate material in miniaturizing antenna
Huo et al. Effects of Zn substitution on high-frequency properties of Ba1. 5Sr1. 5Co2-xZnxFe22O41 hexaferrites
Zhang et al. Enhanced gyromagnetic properties of low temperature-sintered NiCuZn ferrites with Bi2O3 additive
Wang et al. Effect of sintering temperature on microstructure and magnetic and dielectric properties of M-type barium ferrites
Li et al. Co2Z hexaferrites with equivalent permeability and permittivity in UHF band
Gan et al. Ga ions-tailored magnetic-dielectric properties of Mg–Cd composites for high-frequency, miniature and wideband antennas
Lei et al. Mn-substituted Co2Z ferrite ceramics with impedance matching for ultra-high frequency miniaturization antennas
Polley et al. Synthesis and characterization of BaZn2− xMgxFe16O27 (x= 0.0, 0.5, 1.0, 1.5 and 2.0) hexaferrites for high-frequency antenna application
US20240018051A1 (en) Copper oxide doped ni-co-zn ferrite for very high frequency and ultra high frequency applications and process methodology
Rusly et al. Effects of crystalline phase formation of multiferroic BiFeO3 on microwave absorption characteristics
Lathiya et al. Enhancement in magnetic permeability of Ni‐Co‐Zn ferrites using CuO doping for RF and microwave devices
Zhang et al. Effect of Mg content on microstructure and magnetic properties of ZnCoNiMg ferrite
Ma et al. Crystal structure, microstructure, and magnetic properties of Ba3-xNdxCo2Fe24O41 hexaferrite ceramics with enhanced magnetic anisotropy