[go: up one dir, main page]

Browse free open source Python Generative AI and projects below. Use the toggles on the left to filter open source Python Generative AI by OS, license, language, programming language, and project status.

  • All-in-One IT Monitoring - No More Blind Spots Icon
    All-in-One IT Monitoring - No More Blind Spots

    Stop juggling tools. PRTG gives you a complete, real-time view of your IT: servers, devices, cloud, and more - in one easy dashboard.

    Tired of switching between different tools and missing critical alerts? PRTG brings everything together, monitoring your entire IT infrastructure from a single, intuitive interface. Whether it’s servers, switches, printers, or cloud services, you get instant visibility and clear notifications - no technical jargon, no clutter. Set up in minutes, PRTG helps you prevent downtime, reduce stress, and prove your value to your company. Focus on your job, not on chasing issues. Try PRTG and experience true IT peace of mind.
    Get Your Unified IT Trial
  • Monitoring, Securing, Optimizing 3rd party scripts Icon
    Monitoring, Securing, Optimizing 3rd party scripts

    For developers looking for a solution to monitor, script, and optimize 3rd party scripts

    c/side is crawling many sites to get ahead of new attacks. c/side is the only fully autonomous detection tool for assessing 3rd party scripts. We do not rely purely on threat feed intel or easy to circumvent detections. We also use historical context and AI to review the payload and behavior of scripts.
    Learn More
  • 1
    InvokeAI

    InvokeAI

    InvokeAI is a leading creative engine for Stable Diffusion models

    InvokeAI is an implementation of Stable Diffusion, the open source text-to-image and image-to-image generator. It provides a streamlined process with various new features and options to aid the image generation process. It runs on Windows, Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM. InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products. This fork is supported across Linux, Windows and Macintosh. Linux users can use either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm driver). We do not recommend the GTX 1650 or 1660 series video cards. They are unable to run in half-precision mode and do not have sufficient VRAM to render 512x512 images.
    Downloads: 20 This Week
    Last Update:
    See Project
  • 2
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on images such as edge detection and color clustering have also been added. GIMP-ML relies on standard Python packages such as numpy, scikit-image, pillow, pytorch, open-cv, scipy. In addition, GIMP-ML also aims to bring the benefits of using deep learning networks used for computer vision tasks to routine image processing workflows.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 3
    Stable Diffusion in Docker

    Stable Diffusion in Docker

    Run the Stable Diffusion releases in a Docker container

    Run the Stable Diffusion releases in a Docker container with txt2img, img2img, depth2img, pix2pix, upscale4x, and inpaint. Run the Stable Diffusion releases on Huggingface in a GPU-accelerated Docker container. By default, the pipeline uses the full model and weights which requires a CUDA capable GPU with 8GB+ of VRAM. It should take a few seconds to create one image. On less powerful GPUs you may need to modify some of the options; see the Examples section for more details. If you lack a suitable GPU you can set the options --device cpu and --onnx instead. Since it uses the model, you will need to create a user access token in your Huggingface account. Save the user access token in a file called token.txt and make sure it is available when building the container. Create an image from an existing image and a text prompt. Modify an existing image with its depth map and a text prompt.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 4
    LlamaIndex

    LlamaIndex

    Central interface to connect your LLM's with external data

    LlamaIndex (GPT Index) is a project that provides a central interface to connect your LLM's with external data. LlamaIndex is a simple, flexible interface between your external data and LLMs. It provides the following tools in an easy-to-use fashion. Provides indices over your unstructured and structured data for use with LLM's. These indices help to abstract away common boilerplate and pain points for in-context learning. Dealing with prompt limitations (e.g. 4096 tokens for Davinci) when the context is too big. Offers you a comprehensive toolset, trading off cost and performance.
    Downloads: 9 This Week
    Last Update:
    See Project
  • Easily build robust connections between Salesforce and any platform Icon
    Easily build robust connections between Salesforce and any platform

    We help companies using Salesforce connect their data with a no-code Salesforce-native solution.

    Like having Postman inside Salesforce! Declarative Webhooks allows users to quickly and easily configure bi-directional integrations between Salesforce and external systems using a point-and-click interface. No coding is required, making it a fast and efficient and as a native solution, Declarative Webhooks seamlessly integrates with Salesforce platform features such as Flow, Process Builder, and Apex. You can also leverage the AI Integration Agent feature to automatically build your integration templates by providing it with links to API documentation.
    Learn More
  • 5
    DALL·E Mini

    DALL·E Mini

    Generate images from a text prompt

    DALL·E Mini, generate images from a text prompt. Craiyon/DALL·E mini is an attempt at reproducing those results with an open-source model. The model is trained by looking at millions of images from the internet with their associated captions. Over time, it learns how to draw an image from a text prompt. Some concepts are learned from memory as they may have seen similar images. However, it can also learn how to create unique images that don't exist, such as "the Eiffel tower is landing on the moon," by combining multiple concepts together. Optimizer updated to Distributed Shampoo, which proved to be more efficient following comparison of different optimizers. New architecture based on NormFormer and GLU variants following comparison of transformer variants, including DeepNet, Swin v2, NormFormer, Sandwich-LN, RMSNorm with GeLU/Swish/SmeLU.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 6
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very inefficient at those scales. This, as well as the fact that many GPUs became available to us, among other things, prompted us to move development over to GPT-NeoX. All evaluations were done using our evaluation harness. Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 7
    KoboldCpp

    KoboldCpp

    Run GGUF models easily with a UI or API. One File. Zero Install.

    KoboldCpp is an easy-to-use AI text-generation software for GGML and GGUF models, inspired by the original KoboldAI. It's a single self-contained distributable that builds off llama.cpp and adds many additional powerful features.
    Leader badge">
    Downloads: 192 This Week
    Last Update:
    See Project
  • 8
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 9
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC. NGC collection of pre-trained speech processing models.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Cloud data warehouse to power your data-driven innovation Icon
    Cloud data warehouse to power your data-driven innovation

    BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.

    BigQuery Studio provides a single, unified interface for all data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. It also allows you to use simple SQL to access Vertex AI foundational models directly inside BigQuery for text processing tasks, such as sentiment analysis, entity extraction, and many more without having to deal with specialized models.
    Try for free
  • 10
    gpt-2-simple

    gpt-2-simple

    Python package to easily retrain OpenAI's GPT-2 text-generating model

    A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifically the "small" 124M and "medium" 355M hyperparameter versions). Additionally, this package allows easier generation of text, generating to a file for easy curation, allowing for prefixes to force the text to start with a given phrase. For finetuning, it is strongly recommended to use a GPU, although you can generate using a CPU (albeit much more slowly). If you are training in the cloud, using a Colaboratory notebook or a Google Compute Engine VM w/ the TensorFlow Deep Learning image is strongly recommended. (as the GPT-2 model is hosted on GCP) You can use gpt-2-simple to retrain a model using a GPU for free in this Colaboratory notebook, which also demos additional features of the package. Note: Development on gpt-2-simple has mostly been superceded by aitextgen, which has similar AI text generation capabilities with more efficient training time.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 11
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may need to manually preprocess your data into the correct format, for example, continuous data must be represented as floats. Discrete data must be represented as ints or strings. The data should not contain any missing values.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 12
    ChatFred

    ChatFred

    Alfred workflow using ChatGPT, DALL·E 2 and other models for chatting

    Alfred workflow using ChatGPT, DALL·E 2 and other models for chatting, image generation and more. Access ChatGPT, DALL·E 2, and other OpenAI models. Language models often give wrong information. Verify answers if they are important. Talk with ChatGPT via the cf keyword. Answers will show as Large Type. Alternatively, use the Universal Action, Fallback Search, or Hotkey. To generate text with InstructGPT models and see results in-line, use the cft keyword. ⤓ Install on the Alfred Gallery or download it over GitHub and add your OpenAI API key. If you have used ChatGPT or DALL·E 2, you already have an OpenAI account. Otherwise, you can sign up here - You will receive $5 in free credit, no payment data is required. Afterward you can create your API key. To start a conversation with ChatGPT either use the keyword cf, setup the workflow as a fallback search in Alfred or create your custom hotkey to directly send the clipboard content to ChatGPT.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    Diffusers

    Diffusers

    State-of-the-art diffusion models for image and audio generation

    Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions. State-of-the-art diffusion pipelines that can be run in inference with just a few lines of code. Interchangeable noise schedulers for different diffusion speeds and output quality. Pretrained models that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems. We recommend installing Diffusers in a virtual environment from PyPi or Conda. For more details about installing PyTorch and Flax, please refer to their official documentation.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14
    revChatGPT

    revChatGPT

    This app allows you to chat with ChatGPT using reverse-engineered API

    This app allows you to chat with ChatGPT using a reverse-engineered API library called revChatGPT. Replies from the Chatbot are streamed back to the user in real-time, which gives the user an experience similar to how ChatGPT streams back its answers. To get started with the app, you'll need to create an account on OpenAI's ChatGPT and save your credentials. You can choose from three authentication methods: Email/Password, Session token, or Access token. Once you have your credentials, you can select your authentication method in the sidebar and provide the required information. If you choose Email/Password, you'll need to provide your email and password. If you choose Session token, you'll need to provide your session token. If you choose Access token, you'll need to provide your access token. revChatGPT is a reverse-engineered ChatGPT API that is not affiliated with OpenAI. It is intended for educational and research purposes only.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 15
    BERTopic

    BERTopic

    Leveraging BERT and c-TF-IDF to create easily interpretable topics

    BERTopic is a topic modeling technique that leverages transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions. BERTopic supports guided, supervised, semi-supervised, manual, long-document, hierarchical, class-based, dynamic, and online topic modeling. It even supports visualizations similar to LDAvis! Corresponding medium posts can be found here, here and here. For a more detailed overview, you can read the paper or see a brief overview. After having trained our BERTopic model, we can iteratively go through hundreds of topics to get a good understanding of the topics that were extracted. However, that takes quite some time and lacks a global representation. Instead, we can visualize the topics that were generated in a way very similar to LDAvis. By default, the main steps for topic modeling with BERTopic are sentence-transformers, UMAP, HDBSCAN, and c-TF-IDF run in sequence.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    Big Sleep

    Big Sleep

    A simple command line tool for text to image generation

    A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN. Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU. You will be able to have the GAN dream-up images using natural language with a one-line command in the terminal. User-made notebook with bug fixes and added features, like google drive integration. Images will be saved to wherever the command is invoked. If you have enough memory, you can also try using a bigger vision model released by OpenAI for improved generations. You can set the number of classes that you wish to restrict Big Sleep to use for the Big GAN with the --max-classes flag as follows (ex. 15 classes). This may lead to extra stability during training, at the cost of lost expressivity.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    Deep Lake (formerly known as Activeloop Hub) is a data lake for deep learning applications. Our open-source dataset format is optimized for rapid streaming and querying of data while training models at scale, and it includes a simple API for creating, storing, and collaborating on AI datasets of any size. It can be deployed locally or in the cloud, and it enables you to store all of your data in one place, ranging from simple annotations to large videos. Deep Lake is used by Google, Waymo, Red Cross, Omdena, Yale, & Oxford. Use one API to upload, download, and stream datasets to/from AWS S3/S3-compatible storage, GCP, Activeloop cloud, or local storage. Store images, audios and videos in their native compression. Deeplake automatically decompresses them to raw data only when needed, e.g., when training a model. Treat your cloud datasets as if they are a collection of NumPy arrays in your system's memory. Slice them, index them, or iterate through them.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    DocsGPT

    DocsGPT

    GPT-powered chat for documentation search & assistance

    DocsGPT is a cutting-edge open-source solution that streamlines the process of finding information in project documentation. With its integration of powerful GPT models, developers can easily ask questions about a project and receive accurate answers. Say goodbye to time-consuming manual searches, and let DocsGPT help you quickly find the information you need. Try it out and see how it revolutionizes your project documentation experience. Contribute to its development and be a part of the future of AI-powered assistance.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    Haystack

    Haystack

    Haystack is an open source NLP framework to interact with your data

    Apply the latest NLP technology to your own data with the use of Haystack's pipeline architecture. Implement production-ready semantic search, question answering, summarization and document ranking for a wide range of NLP applications. Evaluate components and fine-tune models. Ask questions in natural language and find granular answers in your documents using the latest QA models with the help of Haystack pipelines. Perform semantic search and retrieve ranked documents according to meaning, not just keywords! Make use of and compare the latest pre-trained transformer-based languages models like OpenAI’s GPT-3, BERT, RoBERTa, DPR, and more. Pick any Transformer model from Hugging Face's Model Hub, experiment, find the one that works. Use Haystack NLP components on top of Elasticsearch, OpenSearch, or plain SQL. Boost search performance with Pinecone, Milvus, FAISS, or Weaviate vector databases, and dense passage retrieval.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    Phenaki - Pytorch

    Phenaki - Pytorch

    Implementation of Phenaki Video, which uses Mask GIT

    Implementation of Phenaki Video, which uses Mask GIT to produce text-guided videos of up to 2 minutes in length, in Pytorch. It will also combine another technique involving a token critic for potentially even better generations. A new paper suggests that instead of relying on the predicted probabilities of each token as a measure of confidence, one can train an extra critic to decide what to iteratively mask during sampling. This repository will also endeavor to allow the researcher to train on text-to-image and then text-to-video. Similarly, for unconditional training, the researcher should be able to first train on images and then fine tune on video.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    SentenceTransformers

    SentenceTransformers

    Multilingual sentence & image embeddings with BERT

    SentenceTransformers is a Python framework for state-of-the-art sentence, text and image embeddings. The initial work is described in our paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. You can use this framework to compute sentence / text embeddings for more than 100 languages. These embeddings can then be compared e.g. with cosine-similarity to find sentences with a similar meaning. This can be useful for semantic textual similar, semantic search, or paraphrase mining. The framework is based on PyTorch and Transformers and offers a large collection of pre-trained models tuned for various tasks. Further, it is easy to fine-tune your own models. Our models are evaluated extensively and achieve state-of-the-art performance on various tasks. Further, the code is tuned to provide the highest possible speed.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    Text2Video

    Text2Video

    Software tool that converts text to video for more engaging experience

    Text2Video is a software tool that converts text to video for more engaging learning experience. I started this project because during this semester, I have been given many reading assignments and I felt frustration in reading long text. For me, it was very time and energy-consuming to learn something through reading. So I imagined, "What if there was a tool that turns text into something more engaging such as a video, wouldn't it improve my learning experience?" I created a prototype web application that takes text as an input and generates a video as an output. I plan to further work on the project targeting young college students who are aged between 18 to 23 because they tend to prefer learning through videos over books based on the survey I found. The technologies I used for the project are HTML, CSS, Javascript, Node.js, CCapture.js, ffmpegserver.js, Amazon Polly, Python, Flask, gevent, spaCy, and Pixabay API.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. VALL-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find VALL-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 24
    marqo

    marqo

    Tensor search for humans

    A tensor-based search and analytics engine that seamlessly integrates with your applications, websites, and workflows. Marqo is a versatile and robust search and analytics engine that can be integrated into any website or application. Due to horizontal scalability, Marqo provides lightning-fast query times, even with millions of documents. Marqo helps you configure deep-learning models like CLIP to pull semantic meaning from images. It can seamlessly handle image-to-image, image-to-text and text-to-image search and analytics. Marqo adapts and stores your data in a fully schemaless manner. It combines tensor search with a query DSL that provides efficient pre-filtering. Tensor search allows you to go beyond keyword matching and search based on the meaning of text, images and other unstructured data. Be a part of the tribe and help us revolutionize the future of search. Whether you are a contributor, a user, or simply have questions about Marqo, we got your back.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 25
    website-to-gif

    website-to-gif

    Turn your website into a GIF

    This Github Action automatically creates an animated GIF or WebP from a given web page to display on your project README (or anywhere else). In your GitHub repo, create a workflow file or extend an existing one. You have to also include a step to checkout and commit to the repo. You can use the following example gif.yml. Make sure to modify the url value and add any other input you want to use. WebP rendering will take a lot of time to benefit from lossless quality and file size optimization.
    Downloads: 4 This Week
    Last Update:
    See Project