[go: up one dir, main page]

Showing 2 open source projects for "cite space"

View related business solutions
  • All-in-One IT Monitoring - No More Blind Spots Icon
    All-in-One IT Monitoring - No More Blind Spots

    Stop juggling tools. PRTG gives you a complete, real-time view of your IT: servers, devices, cloud, and more - in one easy dashboard.

    Tired of switching between different tools and missing critical alerts? PRTG brings everything together, monitoring your entire IT infrastructure from a single, intuitive interface. Whether it’s servers, switches, printers, or cloud services, you get instant visibility and clear notifications - no technical jargon, no clutter. Set up in minutes, PRTG helps you prevent downtime, reduce stress, and prove your value to your company. Focus on your job, not on chasing issues. Try PRTG and experience true IT peace of mind.
    Get Your Unified IT Trial
  • Comet Backup - Fast, Secure Backup Software for MSPs Icon
    Comet Backup - Fast, Secure Backup Software for MSPs

    Fast, Secure Backup Software for Businesses and IT Providers

    Comet is a flexible backup platform, giving you total control over your backup environment and storage destinations.
    Learn More
  • 1
    Alphafold

    Alphafold

    Open source code for AlphaFold

    This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP14 and published in Nature. For simplicity, we refer to this model as AlphaFold throughout the rest of this document. Any publication that discloses findings arising from using this source code or the model parameters should cite the AlphaFold paper. Please also refer to the Supplementary Information for a detailed description of the method. You can use...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2

    LWPR

    Locally Weighted Projection Regression (LWPR)

    Locally Weighted Projection Regression (LWPR) is a fully incremental, online algorithm for non-linear function approximation in high dimensional spaces, capable of handling redundant and irrelevant input dimensions. At its core, it uses locally linear models, spanned by a small number of univariate regressions in selected directions in input space. A locally weighted variant of Partial Least Squares (PLS) is employed for doing the dimensionality reduction. Please cite: [1] Sethu Vijayakumar...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next