[go: up one dir, main page]

File: context.py

package info (click to toggle)
cairocffi 1.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 688 kB
  • sloc: python: 3,000; makefile: 19
file content (2258 lines) | stat: -rw-r--r-- 84,791 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
"""
    cairocffi.context
    ~~~~~~~~~~~~~~~~~

    Bindings for Context objects.

    :copyright: Copyright 2013-2019 by Simon Sapin
    :license: BSD, see LICENSE for details.

"""

from . import _check_status, _keepref, cairo, constants, ffi
from .fonts import FontFace, FontOptions, ScaledFont, _encode_string
from .matrix import Matrix
from .patterns import Pattern
from .surfaces import Surface

PATH_POINTS_PER_TYPE = {
    constants.PATH_MOVE_TO: 1,
    constants.PATH_LINE_TO: 1,
    constants.PATH_CURVE_TO: 3,
    constants.PATH_CLOSE_PATH: 0
}


def _encode_path(path_items):
    """Take an iterable of ``(path_operation, coordinates)`` tuples
    in the same format as from :meth:`Context.copy_path`
    and return a ``(path, data)`` tuple of cdata object.

    The first cdata object is a ``cairo_path_t *`` pointer
    that can be used as long as both objects live.

    """
    points_per_type = PATH_POINTS_PER_TYPE
    path_items = list(path_items)
    length = 0
    for path_type, coordinates in path_items:
        num_points = points_per_type[path_type]
        length += 1 + num_points  # 1 header + N points
        if len(coordinates) != 2 * num_points:
            raise ValueError('Expected %d coordinates, got %d.' % (
                2 * num_points, len(coordinates)))

    data = ffi.new('cairo_path_data_t[]', length)
    position = 0
    for path_type, coordinates in path_items:
        header = data[position].header
        header.type = path_type
        header.length = 1 + len(coordinates) // 2
        position += 1
        for i in range(0, len(coordinates), 2):
            point = data[position].point
            point.x = coordinates[i]
            point.y = coordinates[i + 1]
            position += 1
    path = ffi.new(
        'cairo_path_t *',
        {'status': constants.STATUS_SUCCESS, 'data': data, 'num_data': length})
    return path, data


def _iter_path(pointer):
    """Take a cairo_path_t * pointer
    and yield ``(path_operation, coordinates)`` tuples.

    See :meth:`Context.copy_path` for the data structure.

    """
    _check_status(pointer.status)
    data = pointer.data
    num_data = pointer.num_data
    points_per_type = PATH_POINTS_PER_TYPE
    position = 0
    while position < num_data:
        path_data = data[position]
        path_type = path_data.header.type
        points = ()
        for i in range(points_per_type[path_type]):
            point = data[position + i + 1].point
            points += (point.x, point.y)
        yield (path_type, points)
        position += path_data.header.length


class Context(object):
    """A :class:`Context` contains the current state of the rendering device,
    including coordinates of yet to be drawn shapes.

    Cairo contexts are central to cairo
    and all drawing with cairo is always done to a :class:`Context` object.

    :param target: The target :class:`Surface` object.

    Cairo contexts can be used as Python :ref:`context managers <with>`.
    See :meth:`save`.

    """
    def __init__(self, target):
        self._init_pointer(cairo.cairo_create(target._pointer))

    def _init_pointer(self, pointer):
        self._pointer = ffi.gc(pointer, _keepref(cairo, cairo.cairo_destroy))
        self._check_status()

    def _check_status(self):
        _check_status(cairo.cairo_status(self._pointer))

    @classmethod
    def _from_pointer(cls, pointer, incref):
        """Wrap an existing :c:type:`cairo_t *` cdata pointer.

        :type incref: bool
        :param incref:
            Whether increase the :ref:`reference count <refcounting>` now.
        :return:
            A new :class:`Context` instance.

        """
        if pointer == ffi.NULL:
            raise ValueError('Null pointer')
        if incref:
            cairo.cairo_reference(pointer)
        self = object.__new__(cls)
        cls._init_pointer(self, pointer)
        return self

    def get_target(self):
        """Return this context’s target surface.

        :returns:
            An instance of :class:`Surface` or one of its sub-classes,
            a new Python object referencing the existing cairo surface.

        """
        return Surface._from_pointer(
            cairo.cairo_get_target(self._pointer), incref=True)

    #
    #  Save / restore
    #

    def save(self):
        """Makes a copy of the current state of this context
        and saves it on an internal stack of saved states.
        When :meth:`restore` is called,
        the context will be restored to the saved state.
        Multiple calls to :meth:`save` and :meth:`restore` can be nested;
        each call to :meth:`restore` restores the state
        from the matching paired :meth:`save`.

        Instead of using :meth:`save` and :meth:`restore` directly,
        it is recommended to use a :ref:`with statement <with>`::

            with context:
                do_something(context)

        … which is equivalent to::

            context.save()
            try:
                do_something(context)
            finally:
                context.restore()

        """
        cairo.cairo_save(self._pointer)
        self._check_status()

    def restore(self):
        """Restores the context to the state saved
        by a preceding call to :meth:`save`
        and removes that state from the stack of saved states.

        """
        cairo.cairo_restore(self._pointer)
        self._check_status()

    def __enter__(self):
        self.save()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.restore()

    #
    #  Groups
    #

    def push_group(self):
        """Temporarily redirects drawing to an intermediate surface
        known as a group.
        The redirection lasts until the group is completed
        by a call to :meth:`pop_group` or :meth:`pop_group_to_source`.
        These calls provide the result of any drawing
        to the group as a pattern,
        (either as an explicit object, or set as the source pattern).

        This group functionality can be convenient
        for performing intermediate compositing.
        One common use of a group is to render objects
        as opaque within the group,  (so that they occlude each other),
        and then blend the result with translucence onto the destination.

        Groups can be nested arbitrarily deep
        by making balanced calls to :meth:`push_group` / :meth:`pop_group`.
        Each call pushes / pops the new target group onto / from a stack.

        The :meth:`group` method calls :meth:`save`
        so that any changes to the graphics state
        will not be visible outside the group,
        (the pop_group methods call :meth:`restore`).

        By default the intermediate group will have
        a content type of :obj:`COLOR_ALPHA <CONTENT_COLOR_ALPHA>`.
        Other content types can be chosen for the group
        by using :meth:`push_group_with_content` instead.

        As an example,
        here is how one might fill and stroke a path with translucence,
        but without any portion of the fill being visible under the stroke::

            context.push_group()
            context.set_source(fill_pattern)
            context.fill_preserve()
            context.set_source(stroke_pattern)
            context.stroke()
            context.pop_group_to_source()
            context.paint_with_alpha(alpha)

        """
        cairo.cairo_push_group(self._pointer)
        self._check_status()

    def push_group_with_content(self, content):
        """Temporarily redirects drawing to an intermediate surface
        known as a group.
        The redirection lasts until the group is completed
        by a call to :meth:`pop_group` or :meth:`pop_group_to_source`.
        These calls provide the result of any drawing
        to the group as a pattern,
        (either as an explicit object, or set as the source pattern).

        The group will have a content type of :obj:`content`.
        The ability to control this content  type
        is the only distinction between this method and :meth:`push_group`
        which you should see for a more detailed description
        of group rendering.

        :param content: A :ref:`CONTENT` string.

        """
        cairo.cairo_push_group_with_content(self._pointer, content)
        self._check_status()

    def pop_group(self):
        """Terminates the redirection begun by a call to :meth:`push_group`
        or :meth:`push_group_with_content`
        and returns a new pattern containing the results
        of all drawing operations performed to the group.

        The :meth:`pop_group` method calls :meth:`restore`,
        (balancing a call to :meth:`save` by the push_group method),
        so that any changes to the graphics state
        will not be visible outside the group.

        :returns:
            A newly created :class:`SurfacePattern`
            containing the results of all drawing operations
            performed to the group.

        """
        return Pattern._from_pointer(
            cairo.cairo_pop_group(self._pointer), incref=False)

    def pop_group_to_source(self):
        """Terminates the redirection begun by a call to :meth:`push_group`
        or :meth:`push_group_with_content`
        and installs the resulting pattern
        as the source pattern in the given cairo context.

        The behavior of this method is equivalent to::

            context.set_source(context.pop_group())

        """
        cairo.cairo_pop_group_to_source(self._pointer)
        self._check_status()

    def get_group_target(self):
        """Returns the current destination surface for the context.
        This is either the original target surface
        as passed to :class:`Context`
        or the target surface for the current group as started
        by the most recent call to :meth:`push_group`
        or :meth:`push_group_with_content`.

        """
        return Surface._from_pointer(
            cairo.cairo_get_group_target(self._pointer), incref=True)

    #
    #  Sources
    #

    def set_source_rgba(self, red, green, blue, alpha=1):
        """Sets the source pattern within this context to a solid color.
        This color will then be used for any subsequent drawing operation
        until a new source pattern is set.

        The color and alpha components are
        floating point numbers  in the range 0 to 1.
        If the values passed in are outside that range, they will be clamped.

        The default source pattern is opaque black,
        (that is, it is equivalent to ``context.set_source_rgba(0, 0, 0)``).

        :param red: Red component of the color.
        :param green: Green component of the color.
        :param blue: Blue component of the color.
        :param alpha:
            Alpha component of the color.
            1 (the default) is opaque, 0 fully transparent.
        :type red: float
        :type green: float
        :type blue: float
        :type alpha: float

        """
        cairo.cairo_set_source_rgba(self._pointer, red, green, blue, alpha)
        self._check_status()

    def set_source_rgb(self, red, green, blue):
        """Same as :meth:`set_source_rgba` with alpha always 1.
        Exists for compatibility with pycairo.

        """
        cairo.cairo_set_source_rgb(self._pointer, red, green, blue)
        self._check_status()

    def set_source_surface(self, surface, x=0, y=0):
        """This is a convenience method for creating a pattern from surface
        and setting it as the source in this context with :meth:`set_source`.

        The :obj:`x` and :obj:`y` parameters give the user-space coordinate
        at which the surface origin should appear.
        (The surface origin is its upper-left corner
        before any transformation has been applied.)
        The :obj:`x` and :obj:`y` parameters are negated
        and then set as translation values in the pattern matrix.

        Other than the initial translation pattern matrix, as described above,
        all other pattern attributes, (such as its extend mode),
        are set to the default values as in :class:`SurfacePattern`.
        The resulting pattern can be queried with :meth:`get_source`
        so that these attributes can be modified if desired,
        (eg. to create a repeating pattern with :meth:`Pattern.set_extend`).

        :param surface:
            A :class:`Surface` to be used to set the source pattern.
        :param x: User-space X coordinate for surface origin.
        :param y: User-space Y coordinate for surface origin.
        :type x: float
        :type y: float

        """
        cairo.cairo_set_source_surface(self._pointer, surface._pointer, x, y)
        self._check_status()

    def set_source(self, source):
        """Sets the source pattern within this context to :obj:`source`.
        This pattern will then be used for any subsequent drawing operation
        until a new source pattern is set.

        .. note::

            The pattern's transformation matrix will be locked
            to the user space in effect at the time of :meth:`set_source`.
            This means that further modifications
            of the current transformation matrix
            will not affect the source pattern.
            See :meth:`Pattern.set_matrix`.

        The default source pattern is opaque black,
        (that is, it is equivalent to ``context.set_source_rgba(0, 0, 0)``).

        :param source:
            A :class:`Pattern` to be used
            as the source for subsequent drawing operations.

        """
        cairo.cairo_set_source(self._pointer, source._pointer)
        self._check_status()

    def get_source(self):
        """Return this context’s source.

        :returns:
            An instance of :class:`Pattern` or one of its sub-classes,
            a new Python object referencing the existing cairo pattern.

        """
        return Pattern._from_pointer(
            cairo.cairo_get_source(self._pointer), incref=True)

    #
    #  Context parameters
    #

    def set_antialias(self, antialias):
        """Set the :ref:`ANTIALIAS` of the rasterizer used for drawing shapes.
        This value is a hint,
        and a particular backend may or may not support a particular value.
        At the current time,
        no backend supports :obj:`SUBPIXEL <ANTIALIAS_SUBPIXEL>`
        when drawing shapes.

        Note that this option does not affect text rendering,
        instead see :meth:`FontOptions.set_antialias`.

        :param antialias: An :ref:`ANTIALIAS` string.

        """
        cairo.cairo_set_antialias(self._pointer, antialias)
        self._check_status()

    def get_antialias(self):
        """Return the :ref:`ANTIALIAS` string."""
        return cairo.cairo_get_antialias(self._pointer)

    def set_dash(self, dashes, offset=0):
        """Sets the dash pattern to be used by :meth:`stroke`.
        A dash pattern is specified by dashes, a list of positive values.
        Each value provides the length of alternate "on" and "off"
        portions of the stroke.
        :obj:`offset` specifies an offset into the pattern
        at which the stroke begins.

        Each "on" segment will have caps applied
        as if the segment were a separate sub-path.
        In particular, it is valid to use an "on" length of 0
        with :obj:`LINE_CAP_ROUND` or :obj:`LINE_CAP_SQUARE`
        in order to distributed dots or squares along a path.

        Note: The length values are in user-space units
        as evaluated at the time of stroking.
        This is not necessarily the same as the user space
        at the time of :meth:`set_dash`.

        If :obj:`dashes` is empty dashing is disabled.
        If it is of length 1 a symmetric pattern is assumed
        with alternating on and off portions of the size specified
        by the single value.

        :param dashes:
            A list of floats specifying alternate lengths
            of on and off stroke portions.
        :type offset: float
        :param offset:
            An offset into the dash pattern at which the stroke should start.
        :raises:
            :exc:`CairoError`
            if any value in dashes is negative,
            or if all values are 0.
            The context  will be put into an error state.

        """
        cairo.cairo_set_dash(
            self._pointer, ffi.new('double[]', dashes), len(dashes), offset)
        self._check_status()

    def get_dash(self):
        """Return the current dash pattern.

        :returns:
            A ``(dashes, offset)`` tuple of a list and a float.
            :obj:`dashes` is a list of floats,
            empty if no dashing is in effect.

        """
        dashes = ffi.new('double[]', cairo.cairo_get_dash_count(self._pointer))
        offset = ffi.new('double *')
        cairo.cairo_get_dash(self._pointer, dashes, offset)
        self._check_status()
        return list(dashes), offset[0]

    def get_dash_count(self):
        """Same as ``len(context.get_dash()[0])``."""
        # Not really useful with get_dash() returning a list,
        # but retained for compatibility with pycairo.
        return cairo.cairo_get_dash_count(self._pointer)

    def set_fill_rule(self, fill_rule):
        """Set the current :ref:`FILL_RULE` within the cairo context.
        The fill rule is used to determine which regions are inside
        or outside a complex (potentially self-intersecting) path.
        The current fill rule affects both :meth:`fill` and :meth:`clip`.

        The default fill rule is :obj:`WINDING <FILL_RULE_WINDING>`.

        :param fill_rule: A :ref:`FILL_RULE` string.

        """
        cairo.cairo_set_fill_rule(self._pointer, fill_rule)
        self._check_status()

    def get_fill_rule(self):
        """Return the current :ref:`FILL_RULE` string."""
        return cairo.cairo_get_fill_rule(self._pointer)

    def set_line_cap(self, line_cap):
        """Set the current :ref:`LINE_CAP` within the cairo context.
        As with the other stroke parameters,
        the current line cap style is examined by
        :meth:`stroke`, :meth:`stroke_extents`, and :meth:`stroke_to_path`,
        but does not have any effect during path construction.

        The default line cap is :obj:`BUTT <LINE_CAP_BUTT>`.

        :param line_cap: A :ref:`LINE_CAP` string.

        """
        cairo.cairo_set_line_cap(self._pointer, line_cap)
        self._check_status()

    def get_line_cap(self):
        """Return the current :ref:`LINE_CAP` string."""
        return cairo.cairo_get_line_cap(self._pointer)

    def set_line_join(self, line_join):
        """Set the current :ref:`LINE_JOIN` within the cairo context.
        As with the other stroke parameters,
        the current line cap style is examined by
        :meth:`stroke`, :meth:`stroke_extents`, and :meth:`stroke_to_path`,
        but does not have any effect during path construction.

        The default line cap is :obj:`MITER <LINE_JOIN_MITER>`.

        :param line_join: A :ref:`LINE_JOIN` string.

        """
        cairo.cairo_set_line_join(self._pointer, line_join)
        self._check_status()

    def get_line_join(self):
        """Return the current :ref:`LINE_JOIN` string."""
        return cairo.cairo_get_line_join(self._pointer)

    def set_line_width(self, width):
        """Sets the current line width within the cairo context.
        The line width value specifies the diameter of a pen
        that is circular in user space,
        (though device-space pen may be an ellipse in general
        due to scaling / shear / rotation of the CTM).

        .. note::
            When the description above refers to user space and CTM
            it refers to the user space and CTM in effect
            at the time of the stroking operation,
            not the user space and CTM in effect
            at the time of the call to :meth:`set_line_width`.
            The simplest usage makes both of these spaces identical.
            That is, if there is no change to the CTM
            between a call to :meth:`set_line_width`
            and the stroking operation,
            then one can just pass user-space values to :meth:`set_line_width`
            and ignore this note.

        As with the other stroke parameters,
        the current line cap style is examined by
        :meth:`stroke`, :meth:`stroke_extents`, and :meth:`stroke_to_path`,
        but does not have any effect during path construction.

        The default line width value is 2.0.

        :type width: float
        :param width: The new line width.

        """
        cairo.cairo_set_line_width(self._pointer, width)
        self._check_status()

    def get_line_width(self):
        """Return the current line width as a float."""
        return cairo.cairo_get_line_width(self._pointer)

    def set_miter_limit(self, limit):
        """Sets the current miter limit within the cairo context.

        If the current line join style is set to :obj:`MITER <LINE_JOIN_MITER>`
        (see :meth:`set_line_join`),
        the miter limit is used to determine
        whether the lines should be joined with a bevel instead of a miter.
        Cairo divides the length of the miter by the line width.
        If the result is greater than the miter limit,
        the style is converted to a bevel.

        As with the other stroke parameters,
        the current line cap style is examined by
        :meth:`stroke`, :meth:`stroke_extents`, and :meth:`stroke_to_path`,
        but does not have any effect during path construction.

        The default miter limit value is 10.0,
        which will convert joins with interior angles less than 11 degrees
        to bevels instead of miters.
        For reference,
        a miter limit of 2.0 makes the miter cutoff at 60 degrees,
        and a miter limit of 1.414 makes the cutoff at 90 degrees.

        A miter limit for a desired angle can be computed as:
        ``miter_limit = 1. / sin(angle / 2.)``

        :param limit: The miter limit to set.
        :type limit: float

        """
        cairo.cairo_set_miter_limit(self._pointer, limit)
        self._check_status()

    def get_miter_limit(self):
        """Return the current miter limit as a float."""
        return cairo.cairo_get_miter_limit(self._pointer)

    def set_operator(self, operator):
        """Set the current :ref:`OPERATOR`
        to be used for all drawing operations.

        The default operator is :obj:`OVER <OPERATOR_OVER>`.

        :param operator: A :ref:`OPERATOR` string.

        """
        cairo.cairo_set_operator(self._pointer, operator)
        self._check_status()

    def get_operator(self):
        """Return the current :ref:`OPERATOR` string."""
        return cairo.cairo_get_operator(self._pointer)

    def set_tolerance(self, tolerance):
        """Sets the tolerance used when converting paths into trapezoids.
        Curved segments of the path will be subdivided
        until the maximum deviation between the original path
        and the polygonal approximation is less than tolerance.
        The default value is 0.1.
        A larger value will give better performance,
        a smaller value, better appearance.
        (Reducing the value from the default value of 0.1
        is unlikely to improve appearance significantly.)
        The accuracy of paths within Cairo is limited
        by the precision of its internal arithmetic,
        and the prescribed tolerance is restricted
        to the smallest representable internal value.

        :type tolerance: float
        :param tolerance: The tolerance, in device units (typically pixels)

        """
        cairo.cairo_set_tolerance(self._pointer, tolerance)
        self._check_status()

    def get_tolerance(self):
        """Return the current tolerance as a float."""
        return cairo.cairo_get_tolerance(self._pointer)

    #
    #  CTM: Current transformation matrix
    #

    def translate(self, tx, ty):
        """Modifies the current transformation matrix (CTM)
        by translating the user-space origin by ``(tx, ty)``.
        This offset is interpreted as a user-space coordinate
        according to the CTM in place before the new call to :meth:`translate`.
        In other words, the translation of the user-space origin takes place
        after any existing transformation.

        :param tx: Amount to translate in the X direction
        :param ty: Amount to translate in the Y direction
        :type tx: float
        :type ty: float

        """
        cairo.cairo_translate(self._pointer, tx, ty)
        self._check_status()

    def scale(self, sx, sy=None):
        """Modifies the current transformation matrix (CTM)
        by scaling the X and Y user-space axes
        by :obj:`sx` and :obj:`sy` respectively.
        The scaling of the axes takes place after
        any existing transformation of user space.

        If :obj:`sy` is omitted, it is the same as :obj:`sx`
        so that scaling preserves aspect ratios.

        :param sx: Scale factor in the X direction.
        :param sy: Scale factor in the Y direction.
        :type sx: float
        :type sy: float

        """
        if sy is None:
            sy = sx
        cairo.cairo_scale(self._pointer, sx, sy)
        self._check_status()

    def rotate(self, radians):
        """Modifies the current transformation matrix (CTM)
        by rotating the user-space axes by angle :obj:`radians`.
        The rotation of the axes takes places
        after any existing transformation of user space.

        :type radians: float
        :param radians:
            Angle of rotation, in radians.
            The direction of rotation is defined such that positive angles
            rotate in the direction from the positive X axis
            toward the positive Y axis.
            With the default axis orientation of cairo,
            positive angles rotate in a clockwise direction.

        """
        cairo.cairo_rotate(self._pointer, radians)
        self._check_status()

    def transform(self, matrix):
        """Modifies the current transformation matrix (CTM)
        by applying :obj:`matrix` as an additional transformation.
        The new transformation of user space takes place
        after any existing transformation.

        :param matrix:
            A transformation :class:`Matrix`
            to be applied to the user-space axes.

        """
        cairo.cairo_transform(self._pointer, matrix._pointer)
        self._check_status()

    def set_matrix(self, matrix):
        """Modifies the current transformation matrix (CTM)
        by setting it equal to :obj:`matrix`.

        :param matrix:
            A transformation :class:`Matrix` from user space to device space.

        """
        cairo.cairo_set_matrix(self._pointer, matrix._pointer)
        self._check_status()

    def get_matrix(self):
        """Return a copy of the current transformation matrix (CTM)."""
        matrix = Matrix()
        cairo.cairo_get_matrix(self._pointer, matrix._pointer)
        self._check_status()
        return matrix

    def identity_matrix(self):
        """Resets the current transformation matrix (CTM)
        by setting it equal to the identity matrix.
        That is, the user-space and device-space axes will be aligned
        and one user-space unit will transform to one device-space unit.

        """
        cairo.cairo_identity_matrix(self._pointer)
        self._check_status()

    def user_to_device(self, x, y):
        """Transform a coordinate from user space to device space
        by multiplying the given point
        by the current transformation matrix (CTM).

        :param x: X position.
        :param y: Y position.
        :type x: float
        :type y: float
        :returns: A ``(device_x, device_y)`` tuple of floats.

        """
        xy = ffi.new('double[2]', [x, y])
        cairo.cairo_user_to_device(self._pointer, xy + 0, xy + 1)
        self._check_status()
        return tuple(xy)

    def user_to_device_distance(self, dx, dy):
        """Transform a distance vector from user space to device space.
        This method is similar to :meth:`Context.user_to_device`
        except that the translation components of the CTM
        will be ignored when transforming ``(dx, dy)``.

        :param dx: X component of a distance vector.
        :param dy: Y component of a distance vector.
        :type x: float
        :type y: float
        :returns: A ``(device_dx, device_dy)`` tuple of floats.

        """
        xy = ffi.new('double[2]', [dx, dy])
        cairo.cairo_user_to_device_distance(self._pointer, xy + 0, xy + 1)
        self._check_status()
        return tuple(xy)

    def device_to_user(self, x, y):
        """Transform a coordinate from device space to user space
        by multiplying the given point
        by the inverse of the current transformation matrix (CTM).

        :param x: X position.
        :param y: Y position.
        :type x: float
        :type y: float
        :returns: A ``(user_x, user_y)`` tuple of floats.

        """
        xy = ffi.new('double[2]', [x, y])
        cairo.cairo_device_to_user(self._pointer, xy + 0, xy + 1)
        self._check_status()
        return tuple(xy)

    def device_to_user_distance(self, dx, dy):
        """Transform a distance vector from device space to user space.
        This method is similar to :meth:`Context.device_to_user`
        except that the translation components of the inverse CTM
        will be ignored when transforming ``(dx, dy)``.

        :param dx: X component of a distance vector.
        :param dy: Y component of a distance vector.
        :type x: float
        :type y: float
        :returns: A ``(user_dx, user_dy)`` tuple of floats.

        """
        xy = ffi.new('double[2]', [dx, dy])
        cairo.cairo_device_to_user_distance(self._pointer, xy + 0, xy + 1)
        self._check_status()
        return tuple(xy)

    #
    #  Path
    #

    def has_current_point(self):
        """Returns whether a current point is defined on the current path.
        See :meth:`get_current_point`.

        """
        return bool(cairo.cairo_has_current_point(self._pointer))

    def get_current_point(self):
        """Return the current point of the current path,
        which is conceptually the final point reached by the path so far.

        The current point is returned in the user-space coordinate system.
        If there is no defined current point
        or if the context is in an error status,
        ``(0, 0)`` is returned.
        It is possible to check this in advance with :meth:`has_current_point`.

        Most path construction methods alter the current point.
        See the following for details on how they affect the current point:
        :meth:`new_path`,
        :meth:`new_sub_path`,
        :meth:`append_path`,
        :meth:`close_path`,
        :meth:`move_to`,
        :meth:`line_to`,
        :meth:`curve_to`,
        :meth:`rel_move_to`,
        :meth:`rel_line_to`,
        :meth:`rel_curve_to`,
        :meth:`arc`,
        :meth:`arc_negative`,
        :meth:`rectangle`,
        :meth:`text_path`,
        :meth:`glyph_path`,
        :meth:`stroke_to_path`.

        Some methods use and alter the current point
        but do not otherwise change current path:
        :meth:`show_text`,
        :meth:`show_glyphs`,
        :meth:`show_text_glyphs`.

        Some methods unset the current path and as a result, current point:
        :meth:`fill`,
        :meth:`stroke`.

        :returns:
            A ``(x, y)`` tuple of floats, the coordinates of the current point.

        """
        # I’d prefer returning None if self.has_current_point() is False
        # But keep (0, 0) for compat with pycairo.
        xy = ffi.new('double[2]')
        cairo.cairo_get_current_point(self._pointer, xy + 0, xy + 1)
        self._check_status()
        return tuple(xy)

    def new_path(self):
        """ Clears the current path.
        After this call there will be no path and no current point.

        """
        cairo.cairo_new_path(self._pointer)
        self._check_status()

    def new_sub_path(self):
        """Begin a new sub-path.
        Note that the existing path is not affected.
        After this call there will be no current point.

        In many cases, this call is not needed
        since new sub-paths are frequently started with :meth:`move_to`.

        A call to :meth:`new_sub_path` is particularly useful
        when beginning a new sub-path with one of the :meth:`arc` calls.
        This makes things easier as it is no longer necessary
        to manually compute the arc's initial coordinates
        for a call to :meth:`move_to`.

        """
        cairo.cairo_new_sub_path(self._pointer)
        self._check_status()

    def move_to(self, x, y):
        """Begin a new sub-path.
        After this call the current point will be ``(x, y)``.

        :param x: X position of the new point.
        :param y: Y position of the new point.
        :type float: x
        :type float: y

        """
        cairo.cairo_move_to(self._pointer, x, y)
        self._check_status()

    def rel_move_to(self, dx, dy):
        """Begin a new sub-path.
        After this call the current point will be offset by ``(dx, dy)``.

        Given a current point of ``(x, y)``,
        ``context.rel_move_to(dx, dy)`` is logically equivalent to
        ``context.move_to(x + dx, y + dy)``.

        :param dx: The X offset.
        :param dy: The Y offset.
        :type float: dx
        :type float: dy
        :raises:
            :exc:`CairoError` if there is no current point.
            Doing so will cause leave the context in an error state.

        """
        cairo.cairo_rel_move_to(self._pointer, dx, dy)
        self._check_status()

    def line_to(self, x, y):
        """Adds a line to the path from the current point
        to position ``(x, y)`` in user-space coordinates.
        After this call the current point will be ``(x, y)``.

        If there is no current point before the call to :meth:`line_to`
        this method will behave as ``context.move_to(x, y)``.

        :param x: X coordinate of the end of the new line.
        :param y: Y coordinate of the end of the new line.
        :type float: x
        :type float: y

        """
        cairo.cairo_line_to(self._pointer, x, y)
        self._check_status()

    def rel_line_to(self, dx, dy):
        """ Relative-coordinate version of :meth:`line_to`.
        Adds a line to the path from the current point
        to a point that is offset from the current point
        by ``(dx, dy)`` in user space.
        After this call the current point will be offset by ``(dx, dy)``.

        Given a current point of ``(x, y)``,
        ``context.rel_line_to(dx, dy)`` is logically equivalent to
        ``context.line_to(x + dx, y + dy)``.

        :param dx: The X offset to the end of the new line.
        :param dy: The Y offset to the end of the new line.
        :type float: dx
        :type float: dy
        :raises:
            :exc:`CairoError` if there is no current point.
            Doing so will cause leave the context in an error state.

        """
        cairo.cairo_rel_line_to(self._pointer, dx, dy)
        self._check_status()

    def rectangle(self, x, y, width, height):
        """Adds a closed sub-path rectangle
        of the given size to the current path
        at position ``(x, y)`` in user-space coordinates.

        This method is logically equivalent to::

            context.move_to(x, y)
            context.rel_line_to(width, 0)
            context.rel_line_to(0, height)
            context.rel_line_to(-width, 0)
            context.close_path()

        :param x: The X coordinate of the top left corner of the rectangle.
        :param y: The Y coordinate of the top left corner of the rectangle.
        :param width: Width of the rectangle.
        :param height: Height of the rectangle.
        :type float: x
        :type float: y
        :type float: width
        :type float: heigth

        """
        cairo.cairo_rectangle(self._pointer, x, y, width, height)
        self._check_status()

    def arc(self, xc, yc, radius, angle1, angle2):
        """Adds a circular arc of the given radius to the current path.
        The arc is centered at ``(xc, yc)``,
        begins at :obj:`angle1`
        and proceeds in the direction of increasing angles
        to end at :obj:`angle2`.
        If :obj:`angle2` is less than :obj:`angle1`
        it will be progressively increased by ``2 * pi``
        until it is greater than :obj:`angle1`.

        If there is a current point,
        an initial line segment will be added to the path
        to connect the current point to the beginning of the arc.
        If this initial line is undesired,
        it can be avoided by calling :meth:`new_sub_path`
        before calling :meth:`arc`.

        Angles are measured in radians.
        An angle of 0 is in the direction of the positive X axis
        (in user space).
        An angle of ``pi / 2`` radians (90 degrees)
        is in the direction of the positive Y axis (in user space).
        Angles increase in the direction from the positive X axis
        toward the positive Y axis.
        So with the default transformation matrix,
        angles increase in a clockwise direction.

        (To convert from degrees to radians, use ``degrees * pi / 180``.)

        This method gives the arc in the direction of increasing angles;
        see :meth:`arc_negative` to get the arc
        in the direction of decreasing angles.

        The arc is circular in user space.
        To achieve an elliptical arc,
        you can scale the current transformation matrix
        by different amounts in the X and Y directions.
        For example, to draw an ellipse in the box
        given by x, y, width, height::

            from math import pi
            with context:
                context.translate(x + width / 2., y + height / 2.)
                context.scale(width / 2., height / 2.)
                context.arc(0, 0, 1, 0, 2 * pi)

        :param xc: X position of the center of the arc.
        :param yc: Y position of the center of the arc.
        :param radius: The radius of the arc.
        :param angle1: The start angle, in radians.
        :param angle2: The end angle, in radians.
        :type xc: float
        :type yc: float
        :type radius: float
        :type angle1: float
        :type angle2: float

        """
        cairo.cairo_arc(self._pointer, xc, yc, radius, angle1, angle2)
        self._check_status()

    def arc_negative(self, xc, yc, radius, angle1, angle2):
        """Adds a circular arc of the given radius to the current path.
        The arc is centered at ``(xc, yc)``,
        begins at :obj:`angle1`
        and proceeds in the direction of decreasing angles
        to end at :obj:`angle2`.
        If :obj:`angle2` is greater than :obj:`angle1`
        it will be progressively decreased by ``2 * pi``
        until it is greater than :obj:`angle1`.

        See :meth:`arc` for more details.
        This method differs only in
        the direction of the arc between the two angles.

        :param xc: X position of the center of the arc.
        :param yc: Y position of the center of the arc.
        :param radius: The radius of the arc.
        :param angle1: The start angle, in radians.
        :param angle2: The end angle, in radians.
        :type xc: float
        :type yc: float
        :type radius: float
        :type angle1: float
        :type angle2: float

        """
        cairo.cairo_arc_negative(self._pointer, xc, yc, radius, angle1, angle2)
        self._check_status()

    def curve_to(self, x1, y1, x2, y2, x3, y3):
        """Adds a cubic Bézier spline to the path
        from the current point
        to position ``(x3, y3)`` in user-space coordinates,
        using ``(x1, y1)`` and ``(x2, y2)`` as the control points.
        After this call the current point will be ``(x3, y3)``.

        If there is no current point before the call to :meth:`curve_to`
        this method will behave as if preceded by
        a call to ``context.move_to(x1, y1)``.

        :param x1: The X coordinate of the first control point.
        :param y1: The Y coordinate of the first control point.
        :param x2: The X coordinate of the second control point.
        :param y2: The Y coordinate of the second control point.
        :param x3: The X coordinate of the end of the curve.
        :param y3: The Y coordinate of the end of the curve.
        :type x1: float
        :type y1: float
        :type x2: float
        :type y2: float
        :type x3: float
        :type y3: float

        """
        cairo.cairo_curve_to(self._pointer, x1, y1, x2, y2, x3, y3)
        self._check_status()

    def rel_curve_to(self, dx1, dy1, dx2, dy2, dx3, dy3):
        """ Relative-coordinate version of :meth:`curve_to`.
        All offsets are relative to the current point.
        Adds a cubic Bézier spline to the path from the current point
        to a point offset from the current point by ``(dx3, dy3)``,
        using points offset by ``(dx1, dy1)`` and ``(dx2, dy2)``
        as the control points.
        After this call the current point will be offset by ``(dx3, dy3)``.

        Given a current point of ``(x, y)``,
        ``context.rel_curve_to(dx1, dy1, dx2, dy2, dx3, dy3)``
        is logically equivalent to
        ``context.curve_to(x+dx1, y+dy1, x+dx2, y+dy2, x+dx3, y+dy3)``.

        :param dx1: The X offset to the first control point.
        :param dy1: The Y offset to the first control point.
        :param dx2: The X offset to the second control point.
        :param dy2: The Y offset to the second control point.
        :param dx3: The X offset to the end of the curve.
        :param dy3: The Y offset to the end of the curve.
        :type dx1: float
        :type dy1: float
        :type dx2: float
        :type dy2: float
        :type dx3: float
        :type dy3: float
        :raises:
            :exc:`CairoError` if there is no current point.
            Doing so will cause leave the context in an error state.

        """
        cairo.cairo_rel_curve_to(self._pointer, dx1, dy1, dx2, dy2, dx3, dy3)
        self._check_status()

    def text_path(self, text):
        """Adds closed paths for text to the current path.
        The generated path if filled,
        achieves an effect similar to that of :meth:`show_text`.

        Text conversion and positioning is done similar to :meth:`show_text`.

        Like :meth:`show_text`,
        after this call the current point is moved to the origin of where
        the next glyph would be placed in this same progression.
        That is, the current point will be at the origin of the final glyph
        offset by its advance values.
        This allows for chaining multiple calls to to :meth:`text_path`
        without having to set current point in between.

        :param text: The text to show, as an Unicode or UTF-8 string.

        .. note::
            The :meth:`text_path` method is part of
            what the cairo designers call the "toy" text API.
            It is convenient for short demos and simple programs,
            but it is not expected to be adequate
            for serious text-using applications.
            See :ref:`fonts` for details,
            and :meth:`glyph_path` for the "real" text path API in cairo.

        """
        cairo.cairo_text_path(self._pointer, _encode_string(text))
        self._check_status()

    def glyph_path(self, glyphs):
        """Adds closed paths for the glyphs to the current path.
        The generated path if filled,
        achieves an effect similar to that of :meth:`show_glyphs`.

        :param glyphs:
            The glyphs to show.
            See :meth:`show_text_glyphs` for the data structure.

        """
        glyphs = ffi.new('cairo_glyph_t[]', glyphs)
        cairo.cairo_glyph_path(self._pointer, glyphs, len(glyphs))
        self._check_status()

    def close_path(self):
        """Adds a line segment to the path
        from the current point
        to the beginning of the current sub-path,
        (the most recent point passed to cairo_move_to()),
        and closes this sub-path.
        After this call the current point will be
        at the joined endpoint of the sub-path.

        The behavior of :meth:`close_path` is distinct
        from simply calling :meth:`line_to` with the equivalent coordinate
        in the case of stroking.
        When a closed sub-path is stroked,
        there are no caps on the ends of the sub-path.
        Instead, there is a line join
        connecting the final and initial segments of the sub-path.

        If there is no current point before the call to :meth:`close_path`,
        this method will have no effect.

        """
        cairo.cairo_close_path(self._pointer)
        self._check_status()

    def copy_path(self):
        """Return a copy of the current path.

        :returns:
            A list of ``(path_operation, coordinates)`` tuples
            of a :ref:`PATH_OPERATION` string
            and a tuple of floats coordinates
            whose content depends on the operation type:

            * :obj:`MOVE_TO <PATH_MOVE_TO>`: 1 point ``(x, y)``
            * :obj:`LINE_TO <PATH_LINE_TO>`: 1 point ``(x, y)``
            * :obj:`CURVE_TO <PATH_CURVE_TO>`: 3 points
              ``(x1, y1, x2, y2, x3, y3)``
            * :obj:`CLOSE_PATH <PATH_CLOSE_PATH>` 0 points ``()`` (empty tuple)

        """
        path = cairo.cairo_copy_path(self._pointer)
        result = list(_iter_path(path))
        cairo.cairo_path_destroy(path)
        return result

    def copy_path_flat(self):
        """Return a flattened copy of the current path

        This method is like :meth:`copy_path`
        except that any curves in the path will be approximated
        with piecewise-linear approximations,
        (accurate to within the current tolerance value,
        see :meth:`set_tolerance`).
        That is,
        the result is guaranteed to not have any elements
        of type :obj:`CURVE_TO <PATH_CURVE_TO>`
        which will instead be replaced by
        a series of :obj:`LINE_TO <PATH_LINE_TO>` elements.

        :returns:
            A list of ``(path_operation, coordinates)`` tuples.
            See :meth:`copy_path` for the data structure.

        """
        path = cairo.cairo_copy_path_flat(self._pointer)
        result = list(_iter_path(path))
        cairo.cairo_path_destroy(path)
        return result

    def append_path(self, path):
        """Append :obj:`path` onto the current path.
        The path may be either the return value from one of :meth:`copy_path`
        or :meth:`copy_path_flat` or it may be constructed manually.

        :param path:
            An iterable of tuples
            in the same format as returned by :meth:`copy_path`.

        """
        # Both objects need to stay alive
        # until after cairo.cairo_append_path() is finished, but not after.
        path, _ = _encode_path(path)
        cairo.cairo_append_path(self._pointer, path)
        self._check_status()

    def path_extents(self):
        """Computes a bounding box in user-space coordinates
        covering the points on the current path.
        If the current path is empty,
        returns an empty rectangle ``(0, 0, 0, 0)``.
        Stroke parameters, fill rule, surface dimensions and clipping
        are not taken into account.

        Contrast with :meth:`fill_extents` and :meth:`stroke_extents`
        which return the extents of only the area that would be "inked"
        by the corresponding drawing operations.

        The result of :meth:`path_extents`
        is defined as equivalent to the limit of :meth:`stroke_extents`
        with :obj:`LINE_CAP_ROUND` as the line width approaches 0,
        (but never reaching the empty-rectangle
        returned by :meth:`stroke_extents` for a line width of 0).

        Specifically, this means that zero-area sub-paths
        such as :meth:`move_to`; :meth:`line_to()` segments,
        (even degenerate cases
        where the coordinates to both calls are identical),
        will be considered as contributing to the extents.
        However, a lone :meth:`move_to` will not contribute
        to the results of :meth:`path_extents`.

        :return:
            A ``(x1, y1, x2, y2)`` tuple of floats:
            the left, top, right and bottom of the resulting extents,
            respectively.

        """
        extents = ffi.new('double[4]')
        cairo.cairo_path_extents(
            self._pointer, extents + 0, extents + 1, extents + 2, extents + 3)
        self._check_status()
        return tuple(extents)

    #
    #  Drawing operators
    #

    def paint(self):
        """A drawing operator that paints the current source everywhere
        within the current clip region.

        """
        cairo.cairo_paint(self._pointer)
        self._check_status()

    def paint_with_alpha(self, alpha):
        """A drawing operator that paints the current source everywhere
        within the current clip region
        using a mask of constant alpha value alpha.
        The effect is similar to :meth:`paint`,
        but the drawing is faded out using the :obj:`alpha` value.

        :type alpha: float
        :param alpha: Alpha value, between 0 (transparent) and 1 (opaque).

        """
        cairo.cairo_paint_with_alpha(self._pointer, alpha)
        self._check_status()

    def mask(self, pattern):
        """A drawing operator that paints the current source
        using the alpha channel of :obj:`pattern` as a mask.
        (Opaque areas of :obj:`pattern` are painted with the source,
        transparent areas are not painted.)

        :param pattern: A :class:`Pattern` object.

        """
        cairo.cairo_mask(self._pointer, pattern._pointer)
        self._check_status()

    def mask_surface(self, surface, surface_x=0, surface_y=0):
        """A drawing operator that paints the current source
        using the alpha channel of :obj:`surface` as a mask.
        (Opaque areas of :obj:`surface` are painted with the source,
        transparent areas are not painted.)

        :param pattern: A :class:`Surface` object.
        :param surface_x: X coordinate at which to place the origin of surface.
        :param surface_y: Y coordinate at which to place the origin of surface.
        :type surface_x: float
        :type surface_y: float

        """
        cairo.cairo_mask_surface(
            self._pointer, surface._pointer, surface_x, surface_y)
        self._check_status()

    def fill(self):
        """A drawing operator that fills the current path
        according to the current fill rule,
        (each sub-path is implicitly closed before being filled).
        After :meth:`fill`,
        the current path will be cleared from the cairo context.

        See :meth:`set_fill_rule` and :meth:`fill_preserve`.

        """
        cairo.cairo_fill(self._pointer)
        self._check_status()

    def fill_preserve(self):
        """A drawing operator that fills the current path
        according to the current fill rule,
        (each sub-path is implicitly closed before being filled).
        Unlike :meth:`fill`,
        :meth:`fill_preserve` preserves the path within the cairo context.

        See :meth:`set_fill_rule` and :meth:`fill`.

        """
        cairo.cairo_fill_preserve(self._pointer)
        self._check_status()

    def fill_extents(self):
        """Computes a bounding box in user-space coordinates
        covering the area that would be affected, (the "inked" area),
        by a :meth:`fill` operation given the current path and fill parameters.
        If the current path is empty,
        returns an empty rectangle ``(0, 0, 0, 0)``.
        Surface dimensions and clipping are not taken into account.

        Contrast with :meth:`path_extents` which is similar,
        but returns non-zero extents for some paths with no inked area,
        (such as a simple line segment).

        Note that :meth:`fill_extents` must necessarily do more work
        to compute the precise inked areas in light of the fill rule,
        so :meth:`path_extents` may be more desirable for sake of performance
        if the non-inked path extents are desired.

        See :meth:`fill`, :meth:`set_fill_rule` and :meth:`fill_preserve`.

        :return:
            A ``(x1, y1, x2, y2)`` tuple of floats:
            the left, top, right and bottom of the resulting extents,
            respectively.

        """
        extents = ffi.new('double[4]')
        cairo.cairo_fill_extents(
            self._pointer, extents + 0, extents + 1, extents + 2, extents + 3)
        self._check_status()
        return tuple(extents)

    def in_fill(self, x, y):
        """Tests whether the given point is inside the area
        that would be affected by a :meth:`fill` operation
        given the current path and filling parameters.
        Surface dimensions and clipping are not taken into account.

        See :meth:`fill`, :meth:`set_fill_rule` and :meth:`fill_preserve`.

        :param x: X coordinate of the point to test
        :param y: Y coordinate of the point to test
        :type x: float
        :type y: float
        :returns: A boolean.

        """
        return bool(cairo.cairo_in_fill(self._pointer, x, y))

    def stroke(self):
        """A drawing operator that strokes the current path
        according to the current line width, line join, line cap,
        and dash settings.
        After :meth:`stroke`,
        the current path will be cleared from the cairo context.
        See :meth:`set_line_width`, :meth:`set_line_join`,
        :meth:`set_line_cap`, :meth:`set_dash`, and :meth:`stroke_preserve`.

        Note: Degenerate segments and sub-paths are treated specially
        and provide a useful result.
        These can result in two different situations:

        1. Zero-length "on" segments set in :meth:`set_dash`.
           If the cap style is :obj:`ROUND <LINE_CAP_ROUND>`
           or :obj:`SQUARE <LINE_CAP_SQUARE>`
           then these segments will be drawn
           as circular dots or squares respectively.
           In the case of :obj:`SQUARE <LINE_CAP_SQUARE>`,
           the orientation of the squares is determined
           by the direction of the underlying path.
        2. A sub-path created by :meth:`move_to` followed
           by either a :meth:`close_path`
           or one or more calls to :meth:`line_to`
           to the same coordinate as the :meth:`move_to`.
           If the cap style is :obj:`ROUND <LINE_CAP_ROUND>`
           then these sub-paths will be drawn as circular dots.
           Note that in the case of :obj:`SQUARE <LINE_CAP_SQUARE>`
           a degenerate sub-path will not be drawn at all,
           (since the correct orientation is indeterminate).

        In no case will a cap style of :obj:`BUTT <LINE_CAP_BUTT>`
        cause anything to be drawn
        in the case of either degenerate segments or sub-paths.

        """
        cairo.cairo_stroke(self._pointer)
        self._check_status()

    def stroke_preserve(self):
        """A drawing operator that strokes the current path
        according to the current line width, line join, line cap,
        and dash settings.
        Unlike :meth:`stroke`,
        :meth:`stroke_preserve` preserves the path within the cairo context.
        See :meth:`set_line_width`, :meth:`set_line_join`,
        :meth:`set_line_cap`, :meth:`set_dash`, and :meth:`stroke`.

        """
        cairo.cairo_stroke_preserve(self._pointer)
        self._check_status()

    def stroke_extents(self):
        """Computes a bounding box in user-space coordinates
        covering the area that would be affected, (the "inked" area),
        by a :meth:`stroke` operation given the current path
        and stroke parameters.
        If the current path is empty,
        returns an empty rectangle ``(0, 0, 0, 0)``.
        Surface dimensions and clipping are not taken into account.

        Note that if the line width is set to exactly zero,
        then :meth:`stroke_extents` will return an empty rectangle.
        Contrast with :meth:`path_extents`
        which can be used to compute the non-empty bounds
        as the line width approaches zero.

        Note that :meth:`stroke_extents` must necessarily do more work
        to compute the precise inked areas in light of the stroke parameters,
        so :meth:`path_extents` may be more desirable for sake of performance
        if the non-inked path extents are desired.

        See :meth:`stroke`, :meth:`set_line_width`, :meth:`set_line_join`,
        :meth:`set_line_cap`, :meth:`set_dash`, and :meth:`stroke_preserve`.

        :return:
            A ``(x1, y1, x2, y2)`` tuple of floats:
            the left, top, right and bottom of the resulting extents,
            respectively.

        """
        extents = ffi.new('double[4]')
        cairo.cairo_stroke_extents(
            self._pointer, extents + 0, extents + 1, extents + 2, extents + 3)
        self._check_status()
        return tuple(extents)

    def in_stroke(self, x, y):
        """Tests whether the given point is inside the area
        that would be affected by a :meth:`stroke` operation
        given the current path and stroking parameters.
        Surface dimensions and clipping are not taken into account.

        See :meth:`stroke`, :meth:`set_line_width`, :meth:`set_line_join`,
        :meth:`set_line_cap`, :meth:`set_dash`, and :meth:`stroke_preserve`.

        :param x: X coordinate of the point to test
        :param y: Y coordinate of the point to test
        :type x: float
        :type y: float
        :returns: A boolean.

        """
        return bool(cairo.cairo_in_stroke(self._pointer, x, y))

    def clip(self):
        """Establishes a new clip region
        by intersecting the current clip region
        with the current path as it would be filled by :meth:`fill`
        and according to the current fill rule (see :meth:`set_fill_rule`).

        After :meth:`clip`,
        the current path will be cleared from the cairo context.

        The current clip region affects all drawing operations
        by effectively masking out any changes to the surface
        that are outside the current clip region.

        Calling :meth:`clip` can only make the clip region smaller,
        never larger.
        But the current clip is part of the graphics state,
        so a temporary restriction of the clip region can be achieved
        by calling :meth:`clip` within a :meth:`save` / :meth:`restore` pair.
        The only other means of increasing the size of the clip region
        is :meth:`reset_clip`.

        """
        cairo.cairo_clip(self._pointer)
        self._check_status()

    def clip_preserve(self):
        """Establishes a new clip region
        by intersecting the current clip region
        with the current path as it would be filled by :meth:`fill`
        and according to the current fill rule (see :meth:`set_fill_rule`).

        Unlike :meth:`clip`,
        :meth:`clip_preserve` preserves the path within the cairo context.

        The current clip region affects all drawing operations
        by effectively masking out any changes to the surface
        that are outside the current clip region.

        Calling :meth:`clip_preserve` can only make the clip region smaller,
        never larger.
        But the current clip is part of the graphics state,
        so a temporary restriction of the clip region can be achieved
        by calling :meth:`clip_preserve`
        within a :meth:`save` / :meth:`restore` pair.
        The only other means of increasing the size of the clip region
        is :meth:`reset_clip`.

        """
        cairo.cairo_clip_preserve(self._pointer)
        self._check_status()

    def clip_extents(self):
        """Computes a bounding box in user coordinates
        covering the area inside the current clip.

        :return:
            A ``(x1, y1, x2, y2)`` tuple of floats:
            the left, top, right and bottom of the resulting extents,
            respectively.

        """
        extents = ffi.new('double[4]')
        cairo.cairo_clip_extents(
            self._pointer, extents + 0, extents + 1, extents + 2, extents + 3)
        self._check_status()
        return tuple(extents)

    def copy_clip_rectangle_list(self):
        """Return the current clip region as a list of rectangles
        in user coordinates.

        :return:
            A list of rectangles,
            as ``(x, y, width, height)`` tuples of floats.
        :raises:
            :exc:`CairoError`
            if  the clip region cannot be represented as a list
            of user-space rectangles.

        """
        rectangle_list = cairo.cairo_copy_clip_rectangle_list(self._pointer)
        _check_status(rectangle_list.status)
        rectangles = rectangle_list.rectangles
        result = []
        for i in range(rectangle_list.num_rectangles):
            rect = rectangles[i]
            result.append((rect.x, rect.y, rect.width, rect.height))
        cairo.cairo_rectangle_list_destroy(rectangle_list)
        return result

    def in_clip(self, x, y):
        """Tests whether the given point is inside the area
        that would be visible through the current clip,
        i.e. the area that would be filled by a :meth:`paint` operation.

        See :meth:`clip`, and :meth:`clip_preserve`.

        :param x: X coordinate of the point to test
        :param y: Y coordinate of the point to test
        :type x: float
        :type y: float
        :returns: A boolean.

        *New in cairo 1.10.*

        """
        return bool(cairo.cairo_in_clip(self._pointer, x, y))

    def reset_clip(self):
        """Reset the current clip region to its original, unrestricted state.
        That is, set the clip region to an infinitely large shape
        containing the target surface.
        Equivalently, if infinity is too hard to grasp,
        one can imagine the clip region being reset
        to the exact bounds of the target surface.

        Note that code meant to be reusable
        should not call :meth:`reset_clip`
        as it will cause results unexpected by higher-level code
        which calls :meth:`clip`.
        Consider using :meth:`cairo` and :meth:`restore` around :meth:`clip`
        as a more robust means of temporarily restricting the clip region.

        """
        cairo.cairo_reset_clip(self._pointer)
        self._check_status()

    #
    #  Fonts
    #

    def select_font_face(self, family='', slant=constants.FONT_SLANT_NORMAL,
                         weight=constants.FONT_WEIGHT_NORMAL):
        """Selects a family and style of font from a simplified description
        as a family name, slant and weight.

        .. note::

            The :meth:`select_font_face` method is part of
            what the cairo designers call the "toy" text API.
            It is convenient for short demos and simple programs,
            but it is not expected to be adequate
            for serious text-using applications.
            See :ref:`fonts` for details.

        Cairo provides no operation to list available family names
        on the system (this is a "toy", remember),
        but the standard CSS2 generic family names,
        (``"serif"``, ``"sans-serif"``, ``"cursive"``, ``"fantasy"``,
        ``"monospace"``),
        are likely to work as expected.

        If family starts with the string ``"cairo:"``,
        or if no native font backends are compiled in,
        cairo will use an internal font family.
        The internal font family recognizes many modifiers
        in the family string,
        most notably, it recognizes the string ``"monospace"``.
        That is, the family name ``"cairo:monospace"``
        will use the monospace version of the internal font family.

        If text is drawn without a call to :meth:`select_font_face`,
        (nor :meth:`set_font_face` nor :meth:`set_scaled_font`),
        the default family is platform-specific,
        but is essentially ``"sans-serif"``.
        Default slant is :obj:`NORMAL <FONT_SLANT_NORMAL>`,
        and default weight is :obj:`NORMAL <FONT_WEIGHT_NORMAL>`.

        This method is equivalent to a call to :class:`ToyFontFace`
        followed by :meth:`set_font_face`.

        """
        cairo.cairo_select_font_face(
            self._pointer, _encode_string(family), slant, weight)
        self._check_status()

    def set_font_face(self, font_face):
        """Replaces the current font face with :obj:`font_face`.

        :param font_face:
            A :class:`FontFace` object,
            or :obj:`None` to restore the default font.

        """
        font_face = font_face._pointer if font_face is not None else ffi.NULL
        cairo.cairo_set_font_face(self._pointer, font_face)
        self._check_status()

    def get_font_face(self):
        """Return the current font face.

        :param font_face:
            A new :class:`FontFace` object
            wrapping an existing cairo object.

        """
        return FontFace._from_pointer(
            cairo.cairo_get_font_face(self._pointer), incref=True)

    def set_font_size(self, size):
        """Sets the current font matrix to a scale by a factor of :obj:`size`,
        replacing any font matrix previously set with :meth:`set_font_size`
        or :meth:`set_font_matrix`.
        This results in a font size of size user space units.
        (More precisely, this matrix will result in the font's
        em-square being a size by size square in user space.)

        If text is drawn without a call to :meth:`set_font_size`,
        (nor :meth:`set_font_matrix` nor :meth:`set_scaled_font`),
        the default font size is 10.0.

        :param size: The new font size, in user space units
        :type size: float

        """
        cairo.cairo_set_font_size(self._pointer, size)
        self._check_status()

    def set_font_matrix(self, matrix):
        """Sets the current font matrix to :obj:`matrix`.
        The font matrix gives a transformation
        from the design space of the font
        (in this space, the em-square is 1 unit by 1 unit)
        to user space.
        Normally, a simple scale is used (see :meth:`set_font_size`),
        but a more complex font matrix can be used
        to shear the font or stretch it unequally along the two axes

        :param matrix:
            A :class:`Matrix`
            describing a transform to be applied to the current font.

        """
        cairo.cairo_set_font_matrix(self._pointer, matrix._pointer)
        self._check_status()

    def get_font_matrix(self):
        """Copies the current font matrix. See :meth:`set_font_matrix`.

        :returns: A new :class:`Matrix`.

        """
        matrix = Matrix()
        cairo.cairo_get_font_matrix(self._pointer, matrix._pointer)
        self._check_status()
        return matrix

    def set_font_options(self, font_options):
        """Sets a set of custom font rendering options.
        Rendering options are derived by merging these options
        with the options derived from underlying surface;
        if the value in options has a default value
        (like :obj:`ANTIALIAS_DEFAULT`),
        then the value from the surface is used.

        :param font_options: A :class:`FontOptions` object.

        """
        cairo.cairo_set_font_options(self._pointer, font_options._pointer)
        self._check_status()

    def get_font_options(self):
        """Retrieves font rendering options set via :meth:`set_font_options`.
        Note that the returned options do not include any options
        derived from the underlying surface;
        they are literally the options passed to :meth:`set_font_options`.

        :return: A new :class:`FontOptions` object.

        """
        font_options = FontOptions()
        cairo.cairo_get_font_options(self._pointer, font_options._pointer)
        return font_options

    def set_scaled_font(self, scaled_font):
        """Replaces the current font face, font matrix, and font options
        with those of :obj:`scaled_font`.
        Except for some translation, the current CTM of the context
        should be the same as that of the :obj:`scaled_font`,
        which can be accessed using :meth:`ScaledFont.get_ctm`.

        :param scaled_font: A :class:`ScaledFont` object.

        """
        cairo.cairo_set_scaled_font(self._pointer, scaled_font._pointer)
        self._check_status()

    def get_scaled_font(self):
        """Return the current scaled font.

        :return:
            A new :class:`ScaledFont` object,
            wrapping an existing cairo object.

        """
        return ScaledFont._from_pointer(
            cairo.cairo_get_scaled_font(self._pointer), incref=True)

    def font_extents(self):
        """Return the extents of the currently selected font.

        Values are given in the current user-space coordinate system.

        Because font metrics are in user-space coordinates, they are mostly,
        but not entirely, independent of the current transformation matrix.
        If you call :meth:`context.scale(2) <scale>`,
        text will be drawn twice as big,
        but the reported text extents will not be doubled.
        They will change slightly due to hinting
        (so you can't assume that metrics are independent
        of the transformation matrix),
        but otherwise will remain unchanged.

        :returns:
            A ``(ascent, descent, height, max_x_advance, max_y_advance)``
            tuple of floats.

        :obj:`ascent`
            The distance that the font extends above the baseline.
            Note that this is not always exactly equal to
            the maximum of the extents of all the glyphs in the font,
            but rather is picked to express the font designer's intent
            as to how the font should align with elements above it.
        :obj:`descent`
            The distance that the font extends below the baseline.
            This value is positive for typical fonts
            that include portions below the baseline.
            Note that this is not always exactly equal
            to the maximum of the extents of all the glyphs in the font,
            but rather is picked to express the font designer's intent
            as to how the font should align with elements below it.
        :obj:`height`
            The recommended vertical distance between baselines
            when setting consecutive lines of text with the font.
            This is greater than ``ascent + descent``
            by a quantity known as the line spacing or external leading.
            When space is at a premium, most fonts can be set
            with only a distance of ``ascent + descent`` between lines.
        :obj:`max_x_advance`
            The maximum distance in the X direction
            that the origin is advanced for any glyph in the font.
        :obj:`max_y_advance`
            The maximum distance in the Y direction
            that the origin is advanced for any glyph in the font.
            This will be zero for normal fonts used for horizontal writing.
            (The scripts of East Asia are sometimes written vertically.)

        """
        extents = ffi.new('cairo_font_extents_t *')
        cairo.cairo_font_extents(self._pointer, extents)
        self._check_status()
        # returning extents as is would be a nice API,
        # but return a tuple for compat with pycairo.
        return (
            extents.ascent, extents.descent, extents.height,
            extents.max_x_advance, extents.max_y_advance)

    #
    #  Text
    #

    def text_extents(self, text):
        """Returns the extents for a string of text.

        The extents describe a user-space rectangle
        that encloses the "inked" portion of the text,
        (as it would be drawn by :meth:`show_text`).
        Additionally, the :obj:`x_advance` and :obj:`y_advance` values
        indicate the amount by which the current point would be advanced
        by :meth:`show_text`.

        Note that whitespace characters do not directly contribute
        to the size of the rectangle (:obj:`width` and :obj:`height`).
        They do contribute indirectly by changing the position
        of non-whitespace characters.
        In particular, trailing whitespace characters are likely
        to not affect the size of the rectangle,
        though they will affect the x_advance and y_advance values.

        Because text extents are in user-space coordinates,
        they are mostly, but not entirely,
        independent of the current transformation matrix.
        If you call :meth:`context.scale(2) <scale>`,
        text will be drawn twice as big,
        but the reported text extents will not be doubled.
        They will change slightly due to hinting
        (so you can't assume that metrics are independent
        of the transformation matrix),
        but otherwise will remain unchanged.

        :param text: The text to measure, as an Unicode or UTF-8 string.
        :returns:
            A ``(x_bearing, y_bearing, width, height, x_advance, y_advance)``
            tuple of floats.

        :obj:`x_bearing`
            The horizontal distance
            from the origin to the leftmost part of the glyphs as drawn.
            Positive if the glyphs lie entirely to the right of the origin.

        :obj:`y_bearing`
            The vertical distance
            from the origin to the topmost part of the glyphs as drawn.
            Positive only if the glyphs lie completely below the origin;
            will usually be negative.

        :obj:`width`
            Width of the glyphs as drawn.

        :obj:`height`
            Height of the glyphs as drawn.

        :obj:`x_advance`
            Distance to advance in the X direction
            after drawing these glyphs.

        :obj:`y_advance`
            Distance to advance in the Y direction
            after drawing these glyphs.
            Will typically be zero except for vertical text layout
            as found in East-Asian languages.

        """
        extents = ffi.new('cairo_text_extents_t *')
        cairo.cairo_text_extents(self._pointer, _encode_string(text), extents)
        self._check_status()
        # returning extents as is would be a nice API,
        # but return a tuple for compat with pycairo.
        return (
            extents.x_bearing, extents.y_bearing,
            extents.width, extents.height,
            extents.x_advance, extents.y_advance)

    def glyph_extents(self, glyphs):
        """Returns the extents for a list of glyphs.

        The extents describe a user-space rectangle
        that encloses the "inked" portion of the glyphs,
        (as it would be drawn by :meth:`show_glyphs`).
        Additionally, the :obj:`x_advance` and :obj:`y_advance` values
        indicate the amount by which the current point would be advanced
        by :meth:`show_glyphs`.

        :param glyphs:
            A list of glyphs.
            See :meth:`show_text_glyphs` for the data structure.
        :returns:
            A ``(x_bearing, y_bearing, width, height, x_advance, y_advance)``
            tuple of floats.
            See :meth:`text_extents` for details.

        """
        glyphs = ffi.new('cairo_glyph_t[]', glyphs)
        extents = ffi.new('cairo_text_extents_t *')
        cairo.cairo_glyph_extents(
            self._pointer, glyphs, len(glyphs), extents)
        self._check_status()
        return (
            extents.x_bearing, extents.y_bearing,
            extents.width, extents.height,
            extents.x_advance, extents.y_advance)

    def show_text(self, text):
        """A drawing operator that generates the shape from a string text,
        rendered according to the current
        font :meth:`face <set_font_face>`,
        font :meth:`size <set_font_size>`
        (font :meth:`matrix <set_font_matrix>`),
        and font :meth:`options <set_font_options>`.

        This method first computes a set of glyphs for the string of text.
        The first glyph is placed so that its origin is at the current point.
        The origin of each subsequent glyph
        is offset from that of the previous glyph
        by the advance values of the previous glyph.

        After this call the current point is moved
        to the origin of where the next glyph would be placed
        in this same progression.
        That is, the current point will be at
        the origin of the final glyph offset by its advance values.
        This allows for easy display of a single logical string
        with multiple calls to :meth:`show_text`.

        :param text: The text to show, as an Unicode or UTF-8 string.

        .. note::

            This method is part of
            what the cairo designers call the "toy" text API.
            It is convenient for short demos and simple programs,
            but it is not expected to be adequate
            for serious text-using applications.
            See :ref:`fonts` for details
            and :meth:`show_glyphs` for the "real" text display API in cairo.

        """
        cairo.cairo_show_text(self._pointer, _encode_string(text))
        self._check_status()

    def show_glyphs(self, glyphs):
        """A drawing operator that generates the shape from a list of glyphs,
        rendered according to the current
        font :meth:`face <set_font_face>`,
        font :meth:`size <set_font_size>`
        (font :meth:`matrix <set_font_matrix>`),
        and font :meth:`options <set_font_options>`.

        :param glyphs:
            The glyphs to show.
            See :meth:`show_text_glyphs` for the data structure.

        """
        glyphs = ffi.new('cairo_glyph_t[]', glyphs)
        cairo.cairo_show_glyphs(self._pointer, glyphs, len(glyphs))
        self._check_status()

    def show_text_glyphs(self, text, glyphs, clusters, cluster_flags=0):
        """This operation has rendering effects similar to :meth:`show_glyphs`
        but, if the target surface supports it
        (see :meth:`Surface.has_show_text_glyphs`),
        uses the provided text and cluster mapping
        to embed the text for the glyphs shown in the output.
        If the target does not support the extended attributes,
        this method acts like the basic :meth:`show_glyphs`
        as if it had been passed :obj:`glyphs`.

        The mapping between :obj:`text` and :obj:`glyphs`
        is provided by an list of clusters.
        Each cluster covers a number of UTF-8 text bytes and glyphs,
        and neighboring clusters cover neighboring areas
        of :obj:`text` and :obj:`glyphs`.
        The clusters should collectively cover :obj:`text` and :obj:`glyphs`
        in entirety.

        :param text:
            The text to show, as an Unicode or UTF-8 string.
            Because of how :obj:`clusters` work,
            using UTF-8 bytes might be more convenient.
        :param glyphs:
            A list of glyphs.
            Each glyph is a ``(glyph_id, x, y)`` tuple.
            :obj:`glyph_id` is an opaque integer.
            Its exact interpretation depends on the font technology being used.
            :obj:`x` and :obj:`y` are the float offsets
            in the X and Y direction
            between the origin used for drawing or measuring the string
            and the origin of this glyph.
            Note that the offsets are not cumulative.
            When drawing or measuring text,
            each glyph is individually positioned
            with respect to the overall origin.
        :param clusters:
            A list of clusters.
            A text cluster is a minimal mapping of some glyphs
            corresponding to some UTF-8 text,
            represented as a ``(num_bytes, num_glyphs)`` tuple of integers,
            the number of UTF-8 bytes and glyphs covered by the cluster.
            For a cluster to be valid,
            both :obj:`num_bytes` and :obj:`num_glyphs` should be non-negative,
            and at least one should be non-zero.
            Note that clusters with zero glyphs
            are not as well supported as normal clusters.
            For example, PDF rendering applications
            typically ignore those clusters when PDF text is being selected.
        :type cluster_flags: int
        :param cluster_flags:
            Flags (as a bit field) for the cluster mapping.
            The first cluster always covers bytes
            from the beginning of :obj:`text`.
            If :obj:`cluster_flags` does not have
            the :obj:`TEXT_CLUSTER_FLAG_BACKWARD` flag set,
            the first cluster also covers the beginning of :obj:`glyphs`,
            otherwise it covers the end of the :obj:`glyphs` list
            and following clusters move backward.

        """
        glyphs = ffi.new('cairo_glyph_t[]', glyphs)
        clusters = ffi.new('cairo_text_cluster_t[]', clusters)
        cairo.cairo_show_text_glyphs(
            self._pointer, _encode_string(text), -1,
            glyphs, len(glyphs), clusters, len(clusters), cluster_flags)
        self._check_status()

    #
    #  Pages
    #

    def show_page(self):
        """Emits and clears the current page
        for backends that support multiple pages.
        Use :meth:`copy_page` if you don't want to clear the page.

        This is a convenience method
        that simply calls :meth:`Surface.show_page`
        on the context’s target.

        """
        cairo.cairo_show_page(self._pointer)
        self._check_status()

    def copy_page(self):
        """Emits the current page  for backends that support multiple pages,
        but doesn't clear it,
        so the contents of the current page will be retained
        for the next page too.
        Use :meth:`show_page` if you want to clear the page.

        This is a convenience method
        that simply calls :meth:`Surface.copy_page`
        on the context’s target.

        """
        cairo.cairo_copy_page(self._pointer)
        self._check_status()

    #
    #  Tags
    #

    def tag_begin(self, tag_name, attributes=None):
        """Marks the beginning of the ``tag_name`` structure.

        Call :meth:`tag_end` with the same ``tag_name`` to mark the end of the
        structure.

        The attributes string is of the form "key1=value2 key2=value2 ...".
        Values may be boolean (true/false or 1/0), integer, float, string, or
        an array.

        String values are enclosed in single quotes ('). Single quotes and
        backslashes inside the string should be escaped with a backslash.

        Boolean values may be set to true by only specifying the key. eg the
        attribute string "key" is the equivalent to "key=true".

        Arrays are enclosed in '[]'. eg "rect=[1.2 4.3 2.0 3.0]".

        If no attributes are required, ``attributes`` can be omitted, an empty
        string or None.

        See cairo's Tags and Links Description for the list of tags and
        attributes.

        Invalid nesting of tags or invalid attributes will cause the context to
        shutdown with a status of ``CAIRO_STATUS_TAG_ERROR``.

        See :meth:`tag_end`.

        :param tag_name: tag name
        :param attributes: tag attributes

        *New in cairo 1.16.*

        *New in cairocffi 0.9.*

        """
        if attributes is None:
            attributes = ''
        cairo.cairo_tag_begin(
            self._pointer, _encode_string(tag_name),
            _encode_string(attributes))
        self._check_status()

    def tag_end(self, tag_name):
        """Marks the end of the ``tag_name`` structure.

        Invalid nesting of tags will cause @cr to shutdown with a status of
        ``CAIRO_STATUS_TAG_ERROR``.

        See :meth:`tag_begin`.

        :param tag_name: tag name

        *New in cairo 1.16.*

        *New in cairocffi 0.9.*

        """
        cairo.cairo_tag_end(self._pointer, _encode_string(tag_name))
        self._check_status()