[go: up one dir, main page]

File: Eq.h

package info (click to toggle)
caps 0.3.0-3
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 888 kB
  • ctags: 1,273
  • sloc: cpp: 9,837; ansic: 584; makefile: 62
file content (175 lines) | stat: -rw-r--r-- 3,968 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
	Eq.h
	
	Copyright 2004 Tim Goetze <tim@quitte.de>
	
	http://quitte.de/dsp/

	equalizer circuit using recursive filtering.
	based on a motorola paper implementing a similar circuit on a DSP56001.

*/
/*
	This program is free software; you can redistribute it and/or
	modify it under the terms of the GNU General Public License
	as published by the Free Software Foundation; either version 2
	of the License, or (at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the Free Software
	Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
	02111-1307, USA or point your web browser to http://www.gnu.org.
*/

#ifndef _DSP_EQ_H_
#define _DSP_EQ_H_

namespace DSP {

/* a single bandpass as used by the Eq, expressed as a biquad. like all
 * band-pass filters i know, the filter works with a FIR coefficient of 0 
 * for x[-1], so a generic biquad isn't the optimum implementation. 
 */
class BP
{
	public:
		template <class T>
		BP (double fc, double Q, T * ca, T * cb)
			{
				double theta = 2 * fc * M_PI;

				double 
					b = (Q - theta * .5) / (2 * Q + theta),
					a = (.5 - b) / 2,
					c = (.5 + b) * cos (theta);

				ca[0] = 2 * a;
				ca[1] = 0;
				ca[2] = -2 * a;

				cb[0] = 0;
				cb[1] = 2 * c;
				cb[2] = -2 * b;
			}
};

/* BANDS must be a multiple of 4 to enable the use of SSE instructions.
 * however, the current SSE-enabled process() method fails to compile if
 * -funroll-loops is passed to gcc.
 */
template <int USE_BANDS, int BANDS>
class Eq
{
	public:
		/* over-size state buffer to allow alignment */
		float state [BANDS * 8 + 4 + 4];
		/* recursion coefficients, 3 per band */
		float * a, * b, * c;
		/* past outputs, 2 per band */
		float * y;
		/* current gain and recursion factor, each 1 per band = 2 */
		float * gain, * gf;
		/* aligned storage for output summation */
		float * temp;
		/* aligned storage for constants */
		float * two;
		/* input history */
		float x[2];
		/* history index */
		int h;

		Eq()
			{
				/* take care of 128-bit alignment */
				long s = (long) (char *) state;
				s &= 0xF;
				if (s)
					s = 16 - s;
				
				/* assign coefficients */
				a = (float *) (((char *) state) + s); 
				b = a + BANDS; 
				c = a + 2 * BANDS; 
				
				/* output history (input is common to all bands) */
				y = a + 3 * BANDS; 
				gain = a + 5 * BANDS; 
				gf = a + 6 * BANDS; 
				temp = a + 7 * BANDS;
				two = temp + 4;
				two[0] = two[1] = two[2] = two[3] = 2;

				h = 0;
			}

		void reset()
			 {
				 for (int i = 0; i < 2 * BANDS; ++i)
					y[i] = 0;

				for (int i = 0; i < 2; ++i)
					x[i] = 0;
			}

		void init (double fs, double Q)
			{
				double f = 31.25;
				int i = 0;

				for (i = 0; i < USE_BANDS && f < fs / 2; ++i, f *= 2)
					init_band (i, 2 * f * M_PI / fs, Q);
				for (  ; i < BANDS; ++i)
					zero_band (i);

				reset();
			}	

		void init_band (int i, double theta, double Q)
			{
				b[i] = (Q - theta * .5) / (2 * Q + theta);
				a[i] = (.5 - b[i]) / 2;
				c[i] = (.5 + b[i]) * cos (theta);
				gain[i] = 1;
				gf[i] = 1;
			}

		void zero_band (int i)
			{
				a[i] = b[i] = c[i] = 0;
			}

		/* per-band recursion:
		 * 	y = 2 * (a * (x - x[-2]) + c * y[-1] - b * y[-2]) 
		 */
		d_sample process (d_sample s)
			{
				int z1 = h, z2 = h ^ 1;

				float * y1 = y + z1 * BANDS;
				float * y2 = y + z2 * BANDS;

				d_sample x_x2 = s - x[z2];
				d_sample r = 0;

				for (int i = 0; i < USE_BANDS; ++i)
				{
					y2[i] = 2 * (a[i] * x_x2 + c[i] * y1[i] - b[i] * y2[i]);
					r += gain[i] * y2[i];
					gain[i] *= gf[i];
				}
				
				x[z2] = s;
				h = z2;

				return r;
			}
};

} /* namespace DSP */

#endif /* _DSP_EQ_H_ */