1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/*
dsp/SVF.h
Copyright 2002-4 Tim Goetze <tim@quitte.de>
http://quitte.de/dsp/
ladder filter in Chamberlin topology. supports largely independent
f and Q adjustments and sweeps.
*/
/*
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA or point your web browser to http://www.gnu.org.
*/
/*
inspired by this music-dsp entry:
State Variable Filter (Double Sampled, Stable)
Type : 2 Pole Low, High, Band, Notch and Peaking
References :Posted by Andrew Simper
Notes :
Thanks to Laurent de Soras for the stability limit
and Steffan Diedrichsen for the correct notch output.
Code :
input = input buffer;
output = output buffer;
fs = sampling frequency;
fc = cutoff frequency normally something like:
440.0*pow(2.0, (midi_note - 69.0)/12.0);
res = resonance 0 to 1;
drive = internal distortion 0 to 0.1
freq = MIN(0.25, 2.0*sin(PI*fc/(fs*2))); // the fs*2 is because it's double sampled
damp = MIN(2.0*(1.0 - pow(res, 0.25)), MIN(2.0, 2.0/freq - freq*0.5));
notch = notch output
low = low pass output
high = high pass output
band = band pass output
peak = peaking output = low - high
--
double sampled svf loop:
for (i=0; i<numSamples; i++)
{
in = input[i];
notch = in - damp*band;
low = low + freq*band;
high = notch - low;
band = freq*high + band - drive*band*band*band;
out = 0.5*(notch or low or high or band or peak);
notch = in - damp*band;
low = low + freq*band;
high = notch - low;
band = freq*high + band - drive*band*band*band;
out += 0.5*(same out as above);
output[i] = out;
}
*/
#ifndef _DSP_SVF_H_
#define _DSP_SVF_H_
namespace DSP {
template <int OVERSAMPLE>
class SVF
{
protected:
/* loop parameters */
d_sample f, q, qnorm;
/* outputs (peak and notch left out) */
d_sample lo, band, hi;
d_sample * out;
public:
/* the type of filtering to do. */
enum {
Low = 0,
Band = 1,
High = 2
};
SVF()
{
set_out (Low);
set_f_Q (.1, .1);
}
void reset()
{
hi = band = lo = 0;
}
void set_f_Q (double fc, double Q)
{
/* this is a very tight limit */
f = min (.25, 2 * sin (M_PI * fc / OVERSAMPLE));
q = 2 * cos (pow (Q, .1) * M_PI * .5);
q = min (q, min (2., 2 / f - f * .5));
qnorm = sqrt (fabs (q) / 2. + .001);
}
void set_out (int o)
{
if (o == Low)
out = &lo;
else if (o == Band)
out = &band;
else
out = &hi;
}
void one_cycle (d_sample * s, int frames)
{
for (int i = 0; i < frames; ++i)
s[i] = process (s[i]);
}
d_sample process (d_sample x)
{
x = qnorm * x;
for (int pass = 0; pass < OVERSAMPLE; ++pass)
{
hi = x - lo - q * band;
band += f * hi;
lo += f * band;
/* zero-padding, not 0th order holding. */
x = 0;
}
/* peak and notch outputs don't belong in the loop, put them
* here (best in a template) if needed. */
return *out;
}
};
template <int STACKED, int OVERSAMPLE>
class StackedSVF
{
public:
SVF<OVERSAMPLE> svf [STACKED];
void reset()
{
for (int i = 0; i < STACKED; ++i)
svf[i].reset();
}
void set_out (int out)
{
for (int i = 0; i < STACKED; ++i)
svf[i].set_out (out);
}
void set_f_Q (double f, double Q)
{
for (int i = 0; i < STACKED; ++i)
svf[i].set_f_Q (f, Q);
}
d_sample process (d_sample x)
{
for (int i = 0; i < STACKED; ++i)
x = svf[i].process (x);
return x;
}
};
} /* namespace DSP */
#endif /* _DSP_SVF_H_ */
|