1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
|
/*
Copyright (C) 2020- The University of Notre Dame
This software is distributed under the GNU General Public License.
See the file COPYING for details.
*/
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include "mq.h"
#include "buffer.h"
#include "list.h"
#include "itable.h"
#include "set.h"
#include "link.h"
#include "xxmalloc.h"
#include "macros.h"
#include "debug.h"
#include "ppoll_compat.h"
#include "cctools_endian.h"
#define HDR_SIZE (sizeof(struct mq_msg) - offsetof(struct mq_msg, magic))
#define HDR_MAGIC "MQ"
#define HDR_MSG_CONT 0
#define HDR_MSG_START (1<<0)
#define HDR_MSG_END (1<<1)
#define MQ_FRAME_WIDTH 16
#define MQ_FRAME_MAX (1<<MQ_FRAME_WIDTH)
#define FRAME_POS(p) (p & ((1<<MQ_FRAME_WIDTH) - 1))
#define NEXT_FRAME(p) (((p>>MQ_FRAME_WIDTH) + 1)<<MQ_FRAME_WIDTH)
enum mq_socket {
MQ_SOCKET_SERVER,
MQ_SOCKET_INPROGRESS,
MQ_SOCKET_CONNECTED,
MQ_SOCKET_ERROR,
};
struct mq_msg {
size_t len;
size_t total_len;
size_t max_len;
bool parsed_header;
size_t hdr_pos;
size_t buf_pos;
mq_msg_t storage;
buffer_t *buffer;
int pipefd;
int origfl;
bool buffering;
bool seen_initial;
bool hung_up;
/* Here be dragons!
*
* Since we need to be able allow send/recv to be interrupted at any
* time (even in the middle of an int), we can't rely on
* reading/writing multi-byte header fields all in one go. The
* following fields are arranged to match the wire format of the
* header. DO NOT add additional struct fields below here!
* (If you do change the header format, be sure to update the sanity
* check in msg_create.) First is some padding (void pointer is
* self-aligned) so we don't need to worry too much about the
* alignment of the earlier fields. Then the actual header follows.
* Note that the length in the header needs to be in network
* byte order, so that gets stored separately.
*
* 0 1 2 3 4 5 6 7
* +----+----+----+----+----+----+----+----+
* | magic |type| pad| length |
* +----+----+----+----+----+----+----+----+
*/
void *pad1;
char magic[2];
uint8_t type;
char pad2; // necessary for alignment, should be 0
uint32_t hdr_len;
};
struct mq {
struct link *link;
enum mq_socket state;
struct mq *acc;
struct list *send;
int err;
struct mq_msg *recv;
struct mq_msg *sending;
struct mq_msg *recving;
struct mq_poll *poll_group;
void *tag;
};
struct mq_poll {
struct set *members;
struct set *acceptable;
struct set *readable;
struct set *error;
};
static size_t checked_add(size_t a, size_t b) {
size_t out = a + b;
assert(out >= a);
return out;
}
static int set_nonblocking (struct mq_msg *msg) {
assert(msg);
#ifndef MQ_BLOCKING_IO
if (msg->pipefd < 0) return 0;
msg->origfl = fcntl(msg->pipefd, F_GETFL);
if (msg->origfl < 0) return msg->origfl;
return fcntl(msg->pipefd, F_SETFL, msg->origfl|O_NONBLOCK);
#else
return 0;
#endif
}
static int unset_nonblocking (struct mq_msg *msg) {
if (!msg) return 0;
#ifndef MQ_BLOCKING_IO
if (msg->pipefd < 0) return 0;
return fcntl(msg->pipefd, F_SETFL, msg->origfl);
#else
return 0;
#endif
}
static struct mq_msg *msg_create (void) {
// sanity check
assert(HDR_SIZE == 8);
struct mq_msg *out = xxcalloc(1, sizeof(struct mq_msg));
memcpy(out->magic, HDR_MAGIC, sizeof(out->magic));
out->pipefd = -1;
return out;
}
static void mq_msg_delete(struct mq_msg *msg) {
if (!msg) return;
if (msg->pipefd >= 0) close(msg->pipefd);
if (msg->buffer) {
buffer_free(msg->buffer);
free(msg->buffer);
}
free(msg);
}
static void mq_die(struct mq *mq, int err) {
assert(mq);
mq->err = err;
if (mq->state == MQ_SOCKET_ERROR) {
return;
}
mq->state = MQ_SOCKET_ERROR;
mq_close(mq->acc);
mq_msg_delete(mq->sending);
unset_nonblocking(mq->recving);
unset_nonblocking(mq->recv);
free(mq->recving);
free(mq->recv);
struct list_cursor *cur = list_cursor_create(mq->send);
list_seek(cur, 0);
for (struct mq_msg *msg; list_get(cur, (void **) &msg); list_next(cur)) {
mq_msg_delete(msg);
}
list_cursor_destroy(cur);
if (mq->poll_group) {
set_remove(mq->poll_group->acceptable, mq);
set_remove(mq->poll_group->readable, mq);
if (err == 0) {
set_remove(mq->poll_group->error, mq);
} else {
set_insert(mq->poll_group->error, mq);
}
}
}
static struct mq *mq_create(enum mq_socket state, struct link *link) {
struct mq *out = xxcalloc(1, sizeof(*out));
out->send = list_create();
out->state = state;
out->link = link;
return out;
}
void mq_close(struct mq *mq) {
if (!mq) return;
mq_die(mq, 0);
if (mq->poll_group) {
set_remove(mq->poll_group->members, mq);
set_remove(mq->poll_group->error, mq);
}
link_close(mq->link);
list_delete(mq->send);
free(mq);
}
int mq_geterror(struct mq *mq) {
assert(mq);
if (mq->state != MQ_SOCKET_ERROR) {
return 0;
} else {
return mq->err;
}
}
void *mq_get_tag(struct mq *mq) {
assert(mq);
return mq->tag;
}
void mq_set_tag(struct mq *mq, void *tag) {
assert(mq);
mq->tag = tag;
}
int mq_address_local(struct mq *mq, char *addr, int *port) {
return link_address_local(mq->link, addr, port);
}
int mq_address_remote(struct mq *mq, char *addr, int *port) {
return link_address_remote(mq->link, addr, port);
}
static int validate_header(struct mq_msg *msg) {
assert(msg);
errno = EBADMSG;
if (memcmp(msg->magic, HDR_MAGIC, sizeof(msg->magic))) {
return -1;
}
if (msg->pad2 != 0) {
return -1;
}
if (msg->type>>2) {
return -1;
}
if (!!msg->seen_initial == !!(msg->type & HDR_MSG_START)) {
return -1;
}
if (ntohl(msg->hdr_len) > MQ_FRAME_MAX) {
return -1;
}
return 0;
}
static int flush_send(struct mq *mq) {
assert(mq);
int socket = link_fd(mq->link);
while (true) {
if (!mq->sending) {
mq->sending = list_pop_head(mq->send);
}
struct mq_msg *snd = mq->sending;
if (!snd) return 0;
/* The logic here is a bit dense, since there are several modes of operation.
* If a pipe/fd has been connected, we need to read some data in (of unknown
* total length) and then spit that back out on the socket. It might be
* possible to send and receive concurrently (sort of like a ring buffer,
* need a start and end pointer), but things are complicated by the need to
* figure out the length of the stream. It's thus simpler to alternate between
* reading from the pipe and writing to the socket. This state is indicated by
* the `buffering` flag. We do the usual non-blocking reads until hitting EOF,
* then switches to sending mode. In this mode, we use the buffer as scratch
* space between the pipe fd and the socket, otherwise it's the in-memory data.
*/
if (snd->buffering) {
if (snd->buf_pos < snd->len) {
ssize_t rc = read(snd->pipefd,
(char *) buffer_tostring(snd->buffer) + snd->buf_pos,
snd->len - snd->buf_pos);
if (rc == -1 && errno_is_temporary(errno) && !snd->hung_up) {
return 0;
} else if (rc == 0) {
snd->len = snd->buf_pos;
} else if (rc < 0) {
return -1;
}
snd->buf_pos = checked_add(snd->buf_pos, rc);
continue;
} else {
snd->buffering = false;
snd->buf_pos = 0;
continue;
}
}
/* Now for sending. Since we may get EWOULDBLOCK at any time, the send loop
* needs to be able to remember where it left off and resume later. We therefore
* use several variables to hold state: `hdr_pos` tells how much of the header
* has been sent (done when it's the total length of the header), `buf_pos` tells
* how much actual data has been sent.
*/
if (snd->hdr_pos < HDR_SIZE) {
assert(snd->max_len >= snd->total_len);
if (snd->len >= snd->max_len - snd->total_len) {
snd->len = snd->max_len - snd->total_len;
snd->type |= HDR_MSG_END;
}
assert(FRAME_POS(snd->buf_pos) == 0);
size_t framelen = MIN(snd->len - snd->buf_pos, MQ_FRAME_MAX);
assert(framelen <= UINT32_MAX);
snd->hdr_len = htonl(framelen);
/* We infer the end of the stream from a short
* frame (could be zero-length if the message is a multiple of the max frame size).
* The loop above to read from the pipe always fills the buffer completely until
* EOF, so we don't need an extra flag for that. We also check against the limits
* specified, and might end the stream early.
*/
if (framelen < MQ_FRAME_MAX) {
snd->type |= HDR_MSG_END;
}
if (snd->storage == MQ_MSG_BUFFER && framelen + snd->buf_pos == snd->len) {
snd->type |= HDR_MSG_END;
}
ssize_t rc = send(socket, &snd->magic + snd->hdr_pos,
HDR_SIZE - snd->hdr_pos, 0);
if (rc == -1 && errno_is_temporary(errno)) {
return 0;
} else if (rc <= 0) {
return -1;
}
snd->hdr_pos = checked_add(snd->hdr_pos, rc);
continue;
} else if (snd->buf_pos < snd->len) {
ssize_t rc = send(socket,
buffer_tostring(snd->buffer) + snd->buf_pos,
MIN(snd->len, NEXT_FRAME(snd->buf_pos)) - snd->buf_pos, 0);
if (rc == -1 && errno_is_temporary(errno)) {
return 0;
} else if (rc <= 0) {
return -1;
}
snd->buf_pos = checked_add(snd->buf_pos, rc);
snd->total_len = checked_add(snd->total_len, rc);
/* Here we check if it's time for a new frame. If we're streaming from
* a pipe/fd, the framing is handled elsewhere so we check if we've landed
* on a frame boundary within a message (the send length above does some
* fancy accounting to ensure that it never goes past the frame boundary).
* If so, we indicate continuation and reset `hdr_pos` to send another header.
*/
if (snd->buf_pos < snd->len && FRAME_POS(snd->buf_pos) == 0) {
snd->hdr_pos = 0;
snd->type = HDR_MSG_CONT;
}
continue;
} else {
/* If we're streaming from a pipe/fd, reset evertyhing and read in another frame.
* otherwise, we're done.
*/
if (snd->type & HDR_MSG_END) {
mq_msg_delete(snd);
mq->sending = NULL;
} else {
assert(snd->storage == MQ_MSG_FD);
snd->buffering = true;
snd->buf_pos = 0;
snd->hdr_pos = 0;
snd->type = HDR_MSG_CONT;
}
continue;
}
}
}
static int flush_recv(struct mq *mq) {
assert(mq);
int socket = link_fd(mq->link);
/* The recv loop is similar to send, but in reverse order (recv into buffer, then
* possibly write to fd).
*/
while (!mq->recv) {
struct mq_msg *rcv = mq->recving;
// Caller had to specify storage before waiting
assert(rcv);
if (!rcv->buffering) {
if (rcv->hdr_pos < HDR_SIZE) {
ssize_t rc = recv(socket, &rcv->magic + rcv->hdr_pos,
HDR_SIZE - rcv->hdr_pos, 0);
if (rc == -1 && errno_is_temporary(errno)) {
return 0;
} else if (rc == 0) {
/* socket orderly shutdown */
errno = ECONNRESET;
return -1;
} else if (rc < 0) {
return -1;
}
rcv->hdr_pos = checked_add(rcv->hdr_pos, rc);
continue;
} else if (!rcv->parsed_header) {
/* There's an additional step in the recv loop: we need to check a
* possibly untrusted header to decide what to do. Note that the recv
* limits plus storage setting can be used to avoid extreme allocations.
* If recving to a pipe/fd, we'll only keep one frame at a time in memory.
* If storing in a buffer, we'll need to keep the whole message in memory
* at once, so a limit is necessary.
*/
if (validate_header(rcv) == -1) return -1;
rcv->buf_pos = rcv->len;
rcv->len = checked_add(rcv->len, ntohl(rcv->hdr_len));
rcv->total_len = checked_add(rcv->total_len, ntohl(rcv->hdr_len));
if (rcv->total_len > rcv->max_len) {
errno = EMSGSIZE;
return -1;
}
int rc = buffer_seek(rcv->buffer, rcv->len);
if (rc < 0) {
errno = ENOMEM;
return -1;
}
rcv->parsed_header = true;
continue;
} else if (rcv->buf_pos < rcv->len) {
ssize_t rc = recv(socket,
(char *) buffer_tostring(rcv->buffer) + rcv->buf_pos,
rcv->len - rcv->buf_pos, 0);
if (rc == -1 && errno_is_temporary(errno) && errno != 0) {
/* for write, rc == 0 is only an error if errno != 0. */
return 0;
} else if (rc == 0) {
errno = ECONNRESET;
return -1;
} else if (rc < 0) {
return -1;;
}
rcv->buf_pos = checked_add(rcv->buf_pos, rc);
continue;
} else {
/* Now reset everything and let the code below decide if we're done.
*/
rcv->seen_initial = true;
rcv->buffering = true;
rcv->buf_pos = 0;
rcv->hdr_pos = 0;
rcv->parsed_header = false;
continue;
}
}
/* Like in the send loop, flush the buffered frame to the pipe/fd.
*/
if (rcv->storage == MQ_MSG_FD) {
if (rcv->buf_pos < rcv->len) {
ssize_t rc = write(rcv->pipefd,
(char *) buffer_tostring(rcv->buffer) + rcv->buf_pos,
rcv->len - rcv->buf_pos);
if (rc == -1 && errno_is_temporary(errno)) {
return 0;
} else if (rc <= 0) {
return -1;
}
rcv->buf_pos = checked_add(rcv->buf_pos, rc);
continue;
} else {
rcv->len = 0;
}
}
rcv->buffering = false;
if (rcv->type & HDR_MSG_END) {
mq->recv = rcv;
mq->recving = NULL;
}
}
return 0;
}
/* The interface to this function is a little weird: we operate on a pair of
* `struct pollfd`s. This is necessary because of the different modes:
* - Both send and recv are using in-memory buffers: 1 fd (the socket)
* - One direction is using a pipe: 2 fds (pipe and socket)
* - Both directions are buffering: 2 fds (pipe and pipe)
* Later on we'll poll an array of these, which would be complicated if the
* number of fds for each connection can vary. I considered a front/back buffer
* setup, but in the absence of measurements that this is a bottleneck, I just
* did the simple thing and always used 2 per connection. If only one socket
* is needed, the other is set to -1 (will be ignored by the kernel).
*/
static void poll_events(struct mq *mq, struct pollfd *pfd) {
assert(mq);
assert(pfd);
// pfd[0] is send, pfd[1] is recv
pfd[0].fd = -1;
pfd[1].fd = -1;
pfd[0].events = 0;
pfd[1].events = 0;
switch (mq->state) {
case MQ_SOCKET_INPROGRESS:
/* Socket connect has completed/failed if it polls writable.
* Note that it will poll readable before it's done, so it's
* important not to check that.
*/
pfd[0].fd = link_fd(mq->link);
pfd[0].events |= POLLOUT;
break;
case MQ_SOCKET_CONNECTED:
/* Ugly checks to figure out the state of the connection.
*/
if (mq->sending && mq->sending->buffering) {
if (!mq->sending->hung_up) {
pfd[0].fd = mq->sending->pipefd;
}
pfd[0].events |= POLLIN;
} else if (mq->sending || list_length(mq->send)) {
pfd[0].fd = link_fd(mq->link);
pfd[0].events |= POLLOUT;
}
if (mq->recving && mq->recving->buffering) {
pfd[1].fd = mq->recving->pipefd;
pfd[1].events |= POLLOUT;
} else if (!mq->recv) {
pfd[1].fd = link_fd(mq->link);
pfd[1].events |= POLLIN;
}
break;
case MQ_SOCKET_SERVER:
/* Server sockets poll readable when a connection
* is ready to be accepted.
*/
if (!mq->acc) {
pfd[1].fd = link_fd(mq->link);
pfd[1].events |= POLLIN;
}
break;
case MQ_SOCKET_ERROR:
break;
}
if (pfd[0].fd == -1) pfd[0].revents = 0;
if (pfd[1].fd == -1) pfd[1].revents = 0;
}
static void update_poll_group(struct mq *mq) {
assert(mq);
if (!mq->poll_group) return;
if (mq->state == MQ_SOCKET_ERROR) {
set_insert(mq->poll_group->error, mq);
}
if (mq->recv) {
set_insert(mq->poll_group->readable, mq);
}
if (mq->acc) {
set_insert(mq->poll_group->acceptable, mq);
}
}
static int handle_revents(struct mq *mq, struct pollfd *pfd) {
assert(pfd);
assert(mq);
int rc = 0;
int err;
socklen_t size = sizeof(err);
switch (mq->state) {
case MQ_SOCKET_ERROR:
break;
case MQ_SOCKET_INPROGRESS:
/* Once the connection attempt has a result, we can advance the state
* to either connected or error. On ancient systems, some tricks may
* be necessary (see https://cr.yp.to/docs/connect.html). We just do
* the simple/modern thing here.
*/
if (pfd[0].revents & POLLOUT) {
rc = getsockopt(link_fd(mq->link), SOL_SOCKET, SO_ERROR,
&err, &size);
assert(rc == 0);
if (err == 0) {
mq->state = MQ_SOCKET_CONNECTED;
#ifdef MQ_BLOCKING_IO
link_nonblocking(mq->link, 0);
#endif
} else {
mq_die(mq, err);
}
}
break;
case MQ_SOCKET_CONNECTED:
/* If we got ERR or HUP on the source being sent, it indicates the
* other end of the pipe exited or closed the fd. In this case, we
* flush what's left in the buffer and let the send loop close the
* socket. Gettin ERR or HUP on the socket in either direction is
* a fatal error (not sure if this can really happen). We also kill
* the connection if the pipe we're recving into dies, as we don't
* have anywhere to store the data we recv.
*/
if (pfd[0].revents & (POLLERR | POLLHUP)) {
if (mq->sending && mq->sending->buffering) {
pfd[0].revents |= POLLIN;
mq->sending->hung_up = true;
} else {
mq_die(mq, ECONNRESET);
goto DONE;
}
}
if (pfd[1].revents & (POLLERR | POLLHUP)) {
if (mq->recving && mq->recving->buffering) {
mq_die(mq, EPIPE);
goto DONE;
} else {
mq_die(mq, ECONNRESET);
goto DONE;
}
}
if (pfd[0].revents & (POLLOUT | POLLIN)) {
rc = flush_send(mq);
if (rc == -1) {
mq_die(mq, errno);
rc = 0; // will not be polled again, treat as OK
goto DONE;
}
}
if (pfd[1].revents & (POLLOUT | POLLIN)) {
rc = flush_recv(mq);
if (rc == -1) {
mq_die(mq, errno);
rc = 0; // will not be polled again, treat as OK
goto DONE;
}
}
break;
case MQ_SOCKET_SERVER:
if (pfd[1].revents & POLLIN) {
struct link *link = link_accept(mq->link, LINK_NOWAIT);
// If the server socket polls readable,
// this should never block.
assert(link);
// Should only poll on read if accept slot is free
assert(!mq->acc);
struct mq *out = mq_create(MQ_SOCKET_CONNECTED, link);
mq->acc = out;
#ifdef MQ_BLOCKING_IO
link_nonblocking(link, 0);
#endif
}
break;
}
DONE:
update_poll_group(mq);
return rc;
}
struct mq *mq_serve(const char *addr, int port) {
struct link *link = link_serve_address(addr, port);
if (!link) return NULL;
struct mq *out = mq_create(MQ_SOCKET_SERVER, link);
return out;
}
struct mq *mq_connect(const char *addr, int port) {
struct link *link = link_connect(addr, port, LINK_NOWAIT);
if (!link) return NULL;
struct mq *out = mq_create(MQ_SOCKET_INPROGRESS, link);
return out;
}
struct mq *mq_accept(struct mq *mq) {
assert(mq);
struct mq *out = mq->acc;
mq->acc = NULL;
if (mq->poll_group) {
set_remove(mq->poll_group->acceptable, mq);
}
return out;
}
int mq_wait(struct mq *mq, time_t stoptime) {
assert(mq);
int rc;
struct pollfd pfd[2];
pfd[0].revents = 0;
pfd[1].revents = 0;
do {
// NB: we're using revents from the *previous* iteration
if (handle_revents(mq, (struct pollfd *) &pfd) == -1) {
return -1;
}
poll_events(mq, (struct pollfd *) &pfd);
if (mq->recv || mq->acc || mq->state == MQ_SOCKET_ERROR) {
return 1;
}
} while ((rc = ppoll_compat((struct pollfd *) &pfd, 2, stoptime)) > 0);
if (rc == 0 || (rc == -1 && errno == EINTR)) {
return 0;
} else {
return -1;
}
}
struct mq_poll *mq_poll_create(void) {
struct mq_poll *out = xxcalloc(1, sizeof(*out));
out->members = set_create(0);
out->acceptable = set_create(0);
out->readable = set_create(0);
out->error = set_create(0);
return out;
}
void mq_poll_delete(struct mq_poll *p) {
if (!p) return;
struct mq *mq = NULL;
set_first_element(p->members);
while((mq = set_next_element(p->members))) {
mq->poll_group = NULL;
}
set_delete(p->members);
set_delete(p->readable);
set_delete(p->acceptable);
set_delete(p->error);
free(p);
}
int mq_poll_add(struct mq_poll *p, struct mq *mq) {
assert(p);
assert(mq);
if (mq->poll_group == p) {
errno = EEXIST;
return -1;
}
if (mq->poll_group) {
errno = EINVAL;
return -1;
}
mq->poll_group = p;
set_insert(p->members, mq);
return 0;
}
int mq_poll_rm(struct mq_poll *p, struct mq *mq) {
assert(p);
assert(mq);
if (mq->poll_group != p) {
errno = ENOENT;
return -1;
}
mq->poll_group = NULL;
set_remove(p->members, mq);
set_remove(p->acceptable, mq);
set_remove(p->readable, mq);
set_remove(p->error, mq);
return 0;
}
struct mq *mq_poll_acceptable(struct mq_poll *p) {
assert(p);
set_first_element(p->acceptable);
return set_next_element(p->acceptable);
}
struct mq *mq_poll_readable(struct mq_poll *p) {
assert(p);
set_first_element(p->readable);
return set_next_element(p->readable);
}
struct mq *mq_poll_error(struct mq_poll *p) {
assert(p);
set_first_element(p->error);
return set_next_element(p->error);
}
int mq_poll_wait(struct mq_poll *p, time_t stoptime) {
assert(p);
int rc;
int count = set_size(p->members);
struct pollfd *pfds = xxcalloc(2*count, sizeof(*pfds));
int i;
do {
// This assumes that iterating over a set does not
// change the order of the elements.
i = 0;
set_first_element(p->members);
struct mq *mq = NULL;
while((mq = set_next_element(p->members))) {
// NB: we're using revents from the *previous* iteration
rc = handle_revents(mq, &pfds[i]);
if (rc == -1) {
goto DONE;
}
poll_events(mq, &pfds[i]);
i += 2;
}
rc = 0;
rc += set_size(p->acceptable);
rc += set_size(p->readable);
rc += set_size(p->error);
if (rc > 0) goto DONE;
} while ((rc = ppoll_compat(pfds, 2*count, stoptime)) > 0);
DONE:
free(pfds);
if (rc >= 0) {
return rc;
} else if (rc == -1 && errno == EINTR) {
return 0;
} else {
return -1;
}
}
int mq_send_buffer(struct mq *mq, buffer_t *buf, size_t maxlen) {
assert(mq);
assert(buf);
errno = mq_geterror(mq);
if (errno != 0) return -1;
if (maxlen == 0) {
maxlen = SIZE_MAX;
}
struct mq_msg *msg = msg_create();
msg->type = HDR_MSG_START;
msg->storage = MQ_MSG_BUFFER;
msg->buffer = buf;
msg->max_len = maxlen;
buffer_tolstring(buf, &msg->len);
list_push_tail(mq->send, msg);
return 0;
}
int mq_send_fd(struct mq *mq, int fd, size_t maxlen) {
assert(mq);
assert(fd >= 0);
errno = mq_geterror(mq);
if (errno != 0) return -1;
if (maxlen == 0) {
maxlen = SIZE_MAX;
}
struct mq_msg *msg = msg_create();
msg->storage = MQ_MSG_FD;
msg->buffering = true;
msg->buffer = xxcalloc(1, sizeof(*msg->buffer));
buffer_init(msg->buffer);
buffer_abortonfailure(msg->buffer, true);
buffer_grow(msg->buffer, MQ_FRAME_MAX);
msg->type = HDR_MSG_START;
msg->pipefd = fd;
msg->max_len = maxlen;
msg->len = MQ_FRAME_MAX;
list_push_tail(mq->send, msg);
if (set_nonblocking(msg) < 0) {
mq_msg_delete(msg);
return -1;
}
return 0;
}
mq_msg_t mq_recv(struct mq *mq, size_t *length) {
assert(mq);
if (!mq->recv) return MQ_MSG_NONE;
struct mq_msg *msg = mq->recv;
assert(msg->storage != MQ_MSG_NONE);
mq->recv = NULL;
mq_msg_t storage = msg->storage;
if (mq->poll_group) {
set_remove(mq->poll_group->readable, mq);
}
if (length) {
*length = msg->total_len;
}
if (storage == MQ_MSG_FD) {
buffer_free(msg->buffer);
free(msg->buffer);
}
unset_nonblocking(msg);
free(msg);
return storage;
}
int mq_store_buffer(struct mq *mq, buffer_t *buf, size_t maxlen) {
assert(mq);
assert(buf);
if (maxlen == 0) {
maxlen = SIZE_MAX;
}
assert(!mq->recving);
buffer_rewind(buf, 0);
mq->recving = msg_create();
mq->recving->buffer = buf;
mq->recving->storage = MQ_MSG_BUFFER;
mq->recving->max_len = maxlen;
return 0;
}
int mq_store_fd(struct mq *mq, int fd, size_t maxlen) {
assert(mq);
assert(fd >= 0);
if (maxlen == 0) {
maxlen = SIZE_MAX;
}
assert(!mq->recving);
mq->recving = msg_create();
struct mq_msg *rcv = mq->recving;
rcv->pipefd = fd;
rcv->storage = MQ_MSG_FD;
rcv->max_len = maxlen;
rcv->buffer = xxcalloc(1, sizeof(*rcv->buffer));
buffer_init(rcv->buffer);
buffer_abortonfailure(rcv->buffer, true);
if (set_nonblocking(rcv) < 0) {
mq_msg_delete(rcv);
mq->recving = NULL;
return -1;
}
return 0;
}
|