1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
/*
Copyright (C) 2014 The University of Notre Dame
This software is distributed under the GNU General Public License.
See the file COPYING for details.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include "debug.h"
#include "xxmalloc.h"
#include "itable.h"
#include "hash_table.h"
#include "list.h"
#include "set.h"
#include "stringtools.h"
#include "rmsummary.h"
#include "dag.h"
#include "dag_resources.h"
struct dag *dag_create()
{
struct dag *d = malloc(sizeof(*d));
memset(d, 0, sizeof(*d));
d->nodes = 0;
d->filename = NULL;
d->node_table = itable_create(0);
d->local_job_table = itable_create(0);
d->remote_job_table = itable_create(0);
d->files = hash_table_create(0, 0);
d->inputs = set_create(0);
d->outputs = set_create(0);
d->nodeid_counter = 0;
d->export_vars = string_set_create(0, 0);
d->special_vars = string_set_create(0, 0);
d->completed_files = 0;
d->deleted_files = 0;
d->total_file_size = 0;
d->categories = hash_table_create(0, 0);
d->default_category = makeflow_category_lookup_or_create(d, "default");
d->allocation_mode = CATEGORY_ALLOCATION_MODE_FIXED;
d->cache_dir = NULL;
/* Declare special variables */
string_set_insert(d->special_vars, "CATEGORY");
string_set_insert(d->special_vars, "SYMBOL"); /* Deprecated alias for CATEGORY */
string_set_insert(d->special_vars, RESOURCES_CORES);
string_set_insert(d->special_vars, RESOURCES_MEMORY);
string_set_insert(d->special_vars, RESOURCES_DISK);
string_set_insert(d->special_vars, RESOURCES_GPUS);
string_set_insert(d->special_vars, RESOURCES_MPI_PROCESSES);
string_set_insert(d->special_vars, RESOURCES_WALL_TIME);
/* export all variables related to resources */
string_set_insert(d->export_vars, "CATEGORY");
string_set_insert(d->export_vars, RESOURCES_CORES);
string_set_insert(d->export_vars, RESOURCES_MEMORY);
string_set_insert(d->export_vars, RESOURCES_DISK);
string_set_insert(d->export_vars, RESOURCES_GPUS);
string_set_insert(d->export_vars, RESOURCES_MPI_PROCESSES);
string_set_insert(d->export_vars, RESOURCES_WALL_TIME);
memset(d->node_states, 0, sizeof(int) * DAG_NODE_STATE_MAX);
return d;
}
void dag_compile_ancestors(struct dag *d)
{
struct dag_node *n, *m;
struct dag_file *f;
char *name;
if (!d) return;
hash_table_firstkey(d->files);
while(hash_table_nextkey(d->files, &name, (void **) &f)) {
m = f->created_by;
if(!m)
continue;
list_first_item(f->needed_by);
while((n = list_next_item(f->needed_by))) {
debug(D_MAKEFLOW_RUN, "rule %d ancestor of %d\n", m->nodeid, n->nodeid);
set_insert(m->descendants, n);
set_insert(n->ancestors, m);
}
}
}
static int get_ancestor_depth(struct dag_node *n)
{
int group_number = -1;
struct dag_node *ancestor = NULL;
debug(D_MAKEFLOW_RUN, "n->ancestor_depth: %d", n->ancestor_depth);
if(n->ancestor_depth >= 0) {
return n->ancestor_depth;
}
set_first_element(n->ancestors);
while((ancestor = set_next_element(n->ancestors))) {
group_number = get_ancestor_depth(ancestor);
debug(D_MAKEFLOW_RUN, "group: %d, n->ancestor_depth: %d", group_number, n->ancestor_depth);
if(group_number > n->ancestor_depth) {
n->ancestor_depth = group_number;
}
}
n->ancestor_depth++;
return n->ancestor_depth;
}
void dag_find_ancestor_depth(struct dag *d)
{
UINT64_T key;
struct dag_node *n;
itable_firstkey(d->node_table);
while(itable_nextkey(d->node_table, &key, (void **) &n)) {
get_ancestor_depth(n);
}
}
/* Return the dag_file associated with the local name filename.
* If one does not exist, it is created. */
struct dag_file *dag_file_lookup_or_create(struct dag *d, const char *filename)
{
struct dag_file *f;
f = hash_table_lookup(d->files, filename);
if(f) return f;
f = dag_file_create(filename);
hash_table_insert(d->files, f->filename, (void *) f);
return f;
}
/* Returns the struct dag_file for the local filename */
struct dag_file *dag_file_from_name(struct dag *d, const char *filename)
{
return (struct dag_file *) hash_table_lookup(d->files, filename);
}
/* Returns the list of dag_file's which are not the target of any
* node */
struct list *dag_input_files(struct dag *d)
{
struct dag_file *f;
char *filename;
struct list *il;
il = list_create();
hash_table_firstkey(d->files);
while((hash_table_nextkey(d->files, &filename, (void **) &f)))
if(!f->created_by) {
debug(D_MAKEFLOW_RUN, "Found independent input file: %s", f->filename);
list_push_tail(il, f);
}
return il;
}
void dag_count_states(struct dag *d)
{
struct dag_node *n;
int i;
for(i = 0; i < DAG_NODE_STATE_MAX; i++) {
d->node_states[i] = 0;
}
for(n = d->nodes; n; n = n->next) {
d->node_states[n->state]++;
}
}
/**
* If the return value is x, a positive integer, that means at least x tasks
* can be run in parallel during a certain point of the execution of the
* workflow. The following algorithm counts the number of direct child nodes of
* each node (a node represents a task). Node A is a direct child of Node B
* only when Node B is the only parent node of Node A. Then it returns the
* maximum among the direct children counts.
*/
int dag_width_guaranteed_max(struct dag *d)
{
struct dag_node *n, *m, *tmp;
struct dag_file *f;
int nodeid;
int depends_on_single_node = 1;
int max = 0;
for(n = d->nodes; n; n = n->next) {
depends_on_single_node = 1;
nodeid = -1;
m = 0;
// for each source file, see if it is a target file of another node
list_first_item(n->source_files);
while((f = list_next_item(n->source_files))) {
// get the node (tmp) that outputs current source file
tmp = f->created_by;
// if a source file is also a target file
if(tmp) {
debug(D_MAKEFLOW_RUN, "%d depends on %d", n->nodeid, tmp->nodeid);
if(nodeid == -1) {
m = tmp; // m holds the parent node
nodeid = m->nodeid;
continue;
}
// if current node depends on multiple nodes, continue to process next node
if(nodeid != tmp->nodeid) {
depends_on_single_node = 0;
break;
}
}
}
// m != 0 : current node depends on at least one exsisting node
if(m && depends_on_single_node && nodeid != -1) {
m->only_my_children++;
}
}
// find out the maximum number of direct children that a single parent node has
for(n = d->nodes; n; n = n->next) {
max = max < n->only_my_children ? n->only_my_children : max;
}
return max;
}
/**
* returns the depth of the given DAG.
*/
int dag_depth(struct dag *d)
{
struct dag_node *n, *parent;
struct dag_file *f;
struct list *level_unsolved_nodes = list_create();
for(n = d->nodes; n != NULL; n = n->next) {
n->level = 0;
list_first_item(n->source_files);
while((f = list_next_item(n->source_files))) {
if((parent = f->created_by) != NULL) {
n->level = -1;
list_push_tail(level_unsolved_nodes, n);
break;
}
}
}
int max_level = 0;
while((n = (struct dag_node *) list_pop_head(level_unsolved_nodes)) != NULL) {
list_first_item(n->source_files);
while((f = list_next_item(n->source_files))) {
if((parent = f->created_by) != NULL) {
if(parent->level == -1) {
n->level = -1;
list_push_tail(level_unsolved_nodes, n);
break;
} else {
int tmp_level = parent->level + 1;
n->level = n->level > tmp_level ? n->level : tmp_level;
max_level = n->level > max_level ? n->level : max_level;
}
}
}
}
list_delete(level_unsolved_nodes);
return max_level + 1;
}
/**
* This algorithm assumes all the tasks take the same amount of time to execute
* and each task would be executed as early as possible. If the return value is
* x, a positive integer, that means at least x tasks can be run in parallel
* during a certain point of the execution of the workflow.
*
* The following algorithm first determines the level (depth) of each node by
* calling the dag_depth() function and then counts how many nodes are there at
* each level. Then it returns the maximum of the numbers of nodes at each
* level.
*/
int dag_width_uniform_task(struct dag *d)
{
struct dag_node *n;
int depth = dag_depth(d);
size_t level_count_array_size = (depth) * sizeof(int);
int *level_count = malloc(level_count_array_size);
if(!level_count) {
return -1;
}
memset(level_count, 0, level_count_array_size);
for(n = d->nodes; n != NULL; n = n->next) {
level_count[n->level]++;
}
int i, max = 0;
for(i = 0; i < depth; i++) {
if(max < level_count[i]) {
max = level_count[i];
}
}
free(level_count);
return max;
}
/**
* Computes the width of the graph
*/
int dag_width(struct dag *d )
{
struct dag_node *n, *parent;
struct dag_file *f;
/* 1. Find the number of immediate children for all nodes; also,
determine leaves by adding nodes with children==0 to list. */
for(n = d->nodes; n != NULL; n = n->next) {
n->level = 0; // initialize 'level' value to 0 because other functions might have modified this value.
list_first_item(n->source_files);
while((f = list_next_item(n->source_files))) {
parent = f->created_by;
if(parent)
parent->children++;
}
}
struct list *leaves = list_create();
for(n = d->nodes; n != NULL; n = n->next) {
n->children_remaining = n->children;
if(n->children == 0)
list_push_tail(leaves, n);
}
/* 2. Assign every node a "reverse depth" level. Normally by depth,
I mean topologically sort and assign depth=0 to nodes with no
parents. However, I'm thinking I need to reverse this, with depth=0
corresponding to leaves. Also, we want to make sure that no node is
added to the queue without all its children "looking at it" first
(to determine its proper "depth level"). */
int max_level = 0;
while(list_size(leaves) > 0) {
struct dag_node *n = (struct dag_node *) list_pop_head(leaves);
list_first_item(n->source_files);
while((f = list_next_item(n->source_files))) {
parent = f->created_by;
if(!parent)
continue;
if(parent->level < n->level + 1)
parent->level = n->level + 1;
if(parent->level > max_level)
max_level = parent->level;
parent->children_remaining--;
if(parent->children_remaining == 0)
list_push_tail(leaves, parent);
}
}
list_delete(leaves);
/* 3. Now that every node has a level, simply create an array and then
go through the list once more to count the number of nodes in each
level. */
size_t level_count_size = (max_level + 1) * sizeof(int);
int *level_count = malloc(level_count_size);
memset(level_count, 0, level_count_size);
for(n = d->nodes; n != NULL; n = n->next) {
level_count[n->level]++;
}
int i, max = 0;
for(i = 0; i <= max_level; i++) {
if(max < level_count[i])
max = level_count[i];
}
free(level_count);
return max;
}
int dag_remote_jobs_running( struct dag *d )
{
return itable_size(d->remote_job_table);
}
int dag_local_jobs_running( struct dag *d )
{
return itable_size(d->local_job_table);
}
int dag_mount_clean( struct dag *d ) {
struct list *list;
struct dag_file *df;
if(!d) return 0;
list = dag_input_files(d);
if(!list) return 0;
list_first_item(list);
while((df = (struct dag_file *)list_next_item(list))) {
dag_file_mount_clean(df);
}
list_delete(list);
if(d->cache_dir) {
free(d->cache_dir);
d->cache_dir = NULL;
}
return 0;
}
uint64_t dag_absolute_filesize( struct dag *d )
{
uint64_t size = 0;
struct dag_file *f;
char *filename;
hash_table_firstkey(d->files);
while((hash_table_nextkey(d->files, &filename, (void **) &f))){
if(f->created_by) {
size += dag_file_size(f);
}
}
return size;
}
/* vim: set noexpandtab tabstop=4: */
|