1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
#include "cp_types.h"
#include "cp_proto.h"
/* routines for random walk computations, tangency packings only. */
/* ========= euclidean functions =========== */
double G(double x,double y,double z)
/* angle at x */
{
double a;
a=x*(x+y+z);
return ( acos((a-y*z)/(a+y*z)) );
} /* G */
double G1(double x,double y,double z)
/* angle ftn partial. First, convert arguments to s-radii. */
{
double s;
s=x+y+z;
return ((-1.0)*(sqrt(x*y*z)*sqrt(s))*(1.0/s+1.0/x)/((x+y)*(x+z)) );
} /* G1 */
double G2(double x,double y,double z)
/* angle ftn partial. First, convert arguments to s-radii. */
{
return ( (sqrt(x*z)/(sqrt(y)*((x+y)*sqrt(x+y+z)))) );
} /* G2 */
double G3(double x,double y,double z)
/* angle ftn partial. First, convert arguments to s-radii. */
{
return ( (sqrt(x*y)/(sqrt(z)*((x+z)*sqrt(x+y+z)))) );
} /* G3 */
/* ========= hyperbolic functions ========== */
double g(double x,double y,double z)
/* angle function. First, convert arguments to s-radii. */
{
x=1.0/(x*x); y=1.0/(y*y); z=1.0/(z*z);
return (acos( ((x*y+1.0)*(x*z+1.0)-2.0*x*(y*z+1.0)) /
((x*y-1.0)*(x*z-1.0)) ));
} /* g */
double g1(double x,double y,double z)
/* angle ftn partial. First, convert arguments to s-radii. */
{
x=1.0/(x*x); y=1.0/(y*y); z=1.0/(z*z);
return ( (-1.0)*(x*x*y*z-1.0)*sqrt((y-1.0)*(z-1.0)) /
((x*y-1.0)*(x*z-1.0)*sqrt(x*(x-1.0)*(x*y*z-1.0))) );
} /* g1 */
double g2(double x,double y,double z)
/* angle ftn partial. First, convert arguments to s-radii. */
{
x=1.0/(x*x); y=1.0/(y*y); z=1.0/(z*z);
return (sqrt(x*(x-1.0)*(z-1.0)) /
((x*y-1.0)*sqrt((y-1.0)*(x*y*z-1.0))) );
} /* g2 */
double g3(double x,double y,double z)
/* angle ftn partial. First, convert arguments to s-radii. */
{
x=1.0/(x*x); y=1.0/(y*y); z=1.0/(z*z);
return ( sqrt(x*(x-1.0)*(y-1.0)) /
((x*z-1.0)*sqrt((z-1.0)*(x*y*z-1.0))) );
} /* g3 */
double area_div(struct p_data *p,int v)
/* deriv of hyp area. */
{
int k;
double accum=0.0;
struct R_data *pR_ptr;
struct K_data *pK_ptr;
pR_ptr=p->packR_ptr;pK_ptr=p->packK_ptr;
if (p->hes>=0 || v<1 || v>p->nodecount) return 0.0;
for (k=0;k<pK_ptr[v].num;k++)
accum += Av(pR_ptr[v].rad,pR_ptr[pK_ptr[v].flower[k]].rad,
pR_ptr[pK_ptr[v].flower[k+1]].rad);
return accum;
} /* area_div */
double Av(double v,double u,double w)
/* rate of change of area of triangle.*/
{
return ((-1.0)*(g1(v,u,w)+g2(u,v,w)+g3(w,u,v)));
} /* Av */
double dtheta_dlog(struct p_data *p,int v)
/* compute the derivative of the angle_sum theta at vertex v with
respect to the log of the actual hyperbolic radius of v. */
{
double vv,dtdv,h;
vv=p->packR_ptr[v].rad;
if (vv<=0) return 0.0;
vv=1.0/(vv*vv);
h=radius(p,v);
dtdv=node_conductance(p,v)/((1.0-vv)*sqrt(vv));
return (dtdv*2.0*h*exp(2.0*h));
} /* dtheta_dlog */
/* ============= computations ========== */
double twin_conductance(struct p_data *p,int v)
/* conductance to ground in hyp case */
{
double coef,vv;
if (p->hes == 0 || p->hes >0) return 0;
if ((vv=p->packR_ptr[v].rad)<=okerr) return 0.0;
vv=1.0/(vv*vv);
coef=(vv-1.0)*sqrt(vv);
return (area_div(p,v)*coef);
} /* twin_conductance */
double Cvw(double v,double u,double w,double a,int flag,int hes)
/* conductance of edge from v to w. flag: 0=2 nbh, 1=only left
nbh (a), 2=only right nbh (u). */
{
double vv,coef;
if (hes>0) return 0; /* spherical not yet done */
if (hes<0)
{
if (v<=0 || w<=0) return 0;
vv=1.0/(v*v); /* convert to s-radius */
coef=(vv-1.0)*sqrt(vv);
if (flag==1) return (g3(w,a,v)*coef);
if (flag==2) return (g3(w,u,v)*coef);
return ( (g3(w,u,v)+g3(w,a,v))*coef);
}
else
{
coef=v;
if (flag==1) return (G3(w,a,v)*coef);
if (flag==2) return (G3(w,u,v)*coef);
return ( (G3(w,u,v)+G3(w,a,v))*coef );
}
} /* Cvw */
double node_conductance(struct p_data *p,int v)
/* add up edge (and in hyp, twin) conductances */
{
int k;
double accum,coef,vv;
struct R_data *pR_ptr;
struct K_data *pK_ptr;
pR_ptr=p->packR_ptr;pK_ptr=p->packK_ptr;
if (p->hes>0) return 0.0;
if (p->hes==0)
{
accum=0.0;
for (k=1;k<pK_ptr[v].num;k++) /* middle faces */
accum += Cvw(pR_ptr[v].rad,pR_ptr[pK_ptr[v].flower[k-1]].rad,
pR_ptr[pK_ptr[v].flower[k]].rad,
pR_ptr[pK_ptr[v].flower[k+1]].rad,0,p->hes);
accum += Cvw(pR_ptr[v].rad,0.0,pR_ptr[pK_ptr[v].flower[0]].rad,
pR_ptr[pK_ptr[v].flower[1]].rad,1,p->hes); /* first face */
accum += Cvw(pR_ptr[v].rad,
pR_ptr[pK_ptr[v].flower[pK_ptr[v].num-1]].rad,
pR_ptr[pK_ptr[v].flower[pK_ptr[v].num]].rad,
0.0,2,p->hes); /* last face */
return accum;
}
if (p->hes<0)
{
vv=pR_ptr[v].rad;
if (vv<okerr) return 0.0;
vv=1.0/(vv*vv);
coef=(vv-1.0)*sqrt(vv);
accum=area_div(p,v)*coef;
for (k=1;k<pK_ptr[v].num;k++) /* middle faces */
accum += Cvw(pR_ptr[v].rad,pR_ptr[pK_ptr[v].flower[k-1]].rad,
pR_ptr[pK_ptr[v].flower[k]].rad,
pR_ptr[pK_ptr[v].flower[k+1]].rad,0,p->hes);
accum += Cvw(pR_ptr[v].rad,0.0,pR_ptr[pK_ptr[v].flower[0]].rad,
pR_ptr[pK_ptr[v].flower[1]].rad,1,p->hes); /* first face */
accum += Cvw(pR_ptr[v].rad,
pR_ptr[pK_ptr[v].flower[pK_ptr[v].num-1]].rad,
pR_ptr[pK_ptr[v].flower[pK_ptr[v].num]].rad,
0.0,2,p->hes); /* last face */
return accum;
}
return 0.0;
} /* node_conductance */
double edge_conduct(struct p_data *p,int v,int indx)
/* from v to indx neighbor */
{
int w,left_index;
double dum;
struct R_data *pR_ptr;
struct K_data *pK_ptr;
pR_ptr=p->packR_ptr;pK_ptr=p->packK_ptr;
w=pK_ptr[v].flower[indx];
if (pK_ptr[v].bdry_flag && indx==0) /* bdry and upstream ngb */
{
dum=Cvw(pR_ptr[v].rad,0.0,
pR_ptr[w].rad,
pR_ptr[pK_ptr[v].flower[1]].rad,1,p->hes);
return (dum);
}
if (pK_ptr[v].bdry_flag && indx==pK_ptr[v].num) /* bdry, down ngb */
{
dum=Cvw(pR_ptr[v].rad,
pR_ptr[pK_ptr[v].flower[pK_ptr[v].num-1]].rad,
pR_ptr[w].rad,0.0,2,p->hes);
return (dum);
}
if (indx==0) left_index=pK_ptr[v].num-1;
else left_index=indx-1;
dum=Cvw(pR_ptr[v].rad,
pR_ptr[pK_ptr[v].flower[left_index]].rad,
pR_ptr[w].rad,
pR_ptr[pK_ptr[v].flower[indx+1]].rad,0,p->hes);
return (dum);
} /* edge_conduct */
|