1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/**************************************************************************\
*
* This file is part of the Coin 3D visualization library.
* Copyright (C) by Kongsberg Oil & Gas Technologies.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.GPL at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using Coin with software that can not be combined with the GNU
* GPL, and for taking advantage of the additional benefits of our
* support services, please contact Kongsberg Oil & Gas Technologies
* about acquiring a Coin Professional Edition License.
*
* See http://www.coin3d.org/ for more information.
*
* Kongsberg Oil & Gas Technologies, Bygdoy Alle 5, 0257 Oslo, NORWAY.
* http://www.sim.no/ sales@sim.no coin-support@coin3d.org
*
\**************************************************************************/
/*!
\class SoRotor SoRotor.h Inventor/nodes/SoRotor.h
\brief The SoRotor class is a node used to animate rotations.
\ingroup nodes
Insert this node in your hierarchy to apply a continuous rotation
to some geometry. Since this node inherits the SoRotation node,
rotation is restricted around the axis specified in the
rotation field.
The angle value of the SoRotation::rotation field (inherited by this
node) gives the rotation direction. If the value is larger than 0.0,
the rotation will be done in the counterclockwise direction, if it
is negative the rotation will be done in the clockwise direction.
Do not set the rotation value to exactly 0.0, as rotations are
internally handled as quaternions, and when converting from an angle
and a rotation value to a quaternion representation, the information
about the angle "gets lost" if there is no actual rotation.
Note also that the rotation will start at the given angle value.
<b>FILE FORMAT/DEFAULTS:</b>
\code
Rotor {
rotation 0 0 1 0
speed 1
on TRUE
}
\endcode
*/
// *************************************************************************
#include <Inventor/nodes/SoRotor.h>
#include <Inventor/SbVec3f.h>
#include <Inventor/SoDB.h>
#include <Inventor/errors/SoDebugError.h>
#include <Inventor/fields/SoSFTime.h>
#include <Inventor/sensors/SoFieldSensor.h>
#include "coindefs.h"
#include "nodes/SoSubNodeP.h"
// *************************************************************************
/*!
\var SoSFFloat SoRotor::speed
Specifies the speed of rotation, in revolutions per second. Defaults
to 1.0.
*/
/*!
\var SoSFBool SoRotor::on
Enable/disable rotation. Default enabled.
*/
// *************************************************************************
//
// returns the current time. First tries the realTime field, then
// SbTime::getTimeOfDay() if field is not found.
//
static SbTime
get_current_time(void)
{
SoField * realtime = SoDB::getGlobalField("realTime");
if (realtime && realtime->isOfType(SoSFTime::getClassTypeId())) {
return ((SoSFTime*)realtime)->getValue();
}
return SbTime::getTimeOfDay();
}
class SoRotorP {
public:
SoRotorP(SoRotor * m) { this->master = m; }
SbTime starttime;
SbVec3f startaxis;
float startangle;
SoFieldSensor * rtfieldsensor;
SoFieldSensor * onfieldsensor;
SoFieldSensor * rotfieldsensor;
SoFieldSensor * speedfieldsensor;
static void rtFieldSensorCB(void * d, SoSensor * s);
static void fieldSensorCB(void * d, SoSensor * s);
void setRotation(void);
private:
SoRotor * master;
};
#define PUBLIC(p) ((p)->master)
#define PRIVATE(p) ((p)->pimpl)
SO_NODE_SOURCE(SoRotor);
/*!
Constructor.
*/
SoRotor::SoRotor(void)
{
PRIVATE(this) = new SoRotorP(this);
SO_NODE_INTERNAL_CONSTRUCTOR(SoRotor);
SO_NODE_ADD_FIELD(speed, (1.0f));
SO_NODE_ADD_FIELD(on, (TRUE));
SoField * f = SoDB::getGlobalField("realTime");
PRIVATE(this)->rtfieldsensor = new SoFieldSensor(SoRotorP::rtFieldSensorCB, this);
PRIVATE(this)->rtfieldsensor->attach(f);
PRIVATE(this)->rtfieldsensor->setPriority(0);
PRIVATE(this)-> SoFieldSensor(SoRotorP::fieldSensorCB, this);
PRIVATE(this)->onfieldsensor->setPriority(0);
PRIVATE(this)->onfieldsensor->attach(&this->on);
PRIVATE(this)->speedfieldsensor = new SoFieldSensor(SoRotorP::fieldSensorCB, this);
PRIVATE(this)->speedfieldsensor->setPriority(0);
PRIVATE(this)->speedfieldsensor->attach(&this->speed);
PRIVATE(this)->rotfieldsensor = new SoFieldSensor(SoRotorP::fieldSensorCB, this);
PRIVATE(this)->rotfieldsensor->attach(&this->rotation);
PRIVATE(this)->rotfieldsensor->setPriority(0);
PRIVATE(this)->starttime = SbTime::zero();
this->rotation.getValue(PRIVATE(this)->startaxis, PRIVATE(this)->startangle);
}
/*!
Destructor.
*/
SoRotor::~SoRotor()
{
delete PRIVATE(this)->rotfieldsensor;
delete PRIVATE(this)->rtfieldsensor;
delete PRIVATE(this)->onfieldsensor;
delete PRIVATE(this)->speedfieldsensor;
delete PRIVATE(this);
}
// Doc from parent.
void
SoRotor::initClass(void)
{
SO_NODE_INTERNAL_INIT_CLASS(SoRotor, SO_FROM_INVENTOR_1);
}
// detects when some field changes value
void
SoRotorP::fieldSensorCB(void * d, SoSensor * s)
{
SoRotor * thisp = (SoRotor *) d;
if (s == PRIVATE(thisp)->onfieldsensor) {
if (thisp->on.getValue() == TRUE) {
thisp->rotation.getValue(PRIVATE(thisp)->startaxis, PRIVATE(thisp)->startangle);
PRIVATE(thisp)->starttime = get_current_time();
}
}
else if (s == PRIVATE(thisp)->speedfieldsensor) {
thisp->rotation.getValue(PRIVATE(thisp)->startaxis, PRIVATE(thisp)->startangle);
PRIVATE(thisp)->starttime = get_current_time();
}
else if (s == PRIVATE(thisp)->rotfieldsensor) {
thisp->rotation.getValue(PRIVATE(thisp)->startaxis, PRIVATE(thisp)->startangle);
PRIVATE(thisp)->starttime = get_current_time();
}
}
void
SoRotorP::rtFieldSensorCB(void * d, SoSensor *)
{
SoRotor * thisp = (SoRotor *) d;
// got to check value of on field here in case rtfieldsensor
// triggers before onfieldsensor.
if (thisp->on.getValue()) {
PRIVATE(thisp)->setRotation();
}
}
// sets rotation based on time passed from starttime
void
SoRotorP::setRotation(void)
{
if (this->starttime == SbTime::zero()) {
// don't do anything first time we get here
this->starttime = get_current_time();
return;
}
SbTime difftime = get_current_time() - this->starttime;
float diffangle = (float)
(difftime.getValue() *
((double)PUBLIC(this)->speed.getValue()) * M_PI * 2.0);
float angle = this->startangle + diffangle;
if (angle < 0.0f) {
angle = (float) (2.0 * M_PI - fmod((double)-angle, M_PI*2.0));
}
if (angle > M_PI * 2.0f) {
angle = (float) fmod((double)angle, M_PI * 2.0);
}
this->rotfieldsensor->detach();
PUBLIC(this)->rotation.setValue(SbRotation(this->startaxis, angle));
this->rotfieldsensor->attach(&PUBLIC(this)->rotation);
}
#undef PRIVATE
#undef PUBLIC
|