1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
/**************************************************************************\
*
* This file is part of the Coin 3D visualization library.
* Copyright (C) by Kongsberg Oil & Gas Technologies.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.GPL at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using Coin with software that can not be combined with the GNU
* GPL, and for taking advantage of the additional benefits of our
* support services, please contact Kongsberg Oil & Gas Technologies
* about acquiring a Coin Professional Edition License.
*
* See http://www.coin3d.org/ for more information.
*
* Kongsberg Oil & Gas Technologies, Bygdoy Alle 5, 0257 Oslo, NORWAY.
* http://www.sim.no/ sales@sim.no coin-support@coin3d.org
*
\**************************************************************************/
/*!
\class SbBox2d Inventor/SbBox2d.h
\brief The SbBox2d class is a 2 dimensional box with double precision
corner coordinates.
\ingroup base
This box class is used by many other classes in Coin for data
exchange and storage. It provides two box corners with double
precision coordinates, which is among other things useful for
representing screen or canvas dimensions in normalized coordinates.
This class is a Coin extension.
\sa SbBox2s, SbBox2f, SbBox3s, SbBox3f, SbBox3d, SbXfBox3f.
\since Coin 2.0
\since TGS Inventor 2.6
*/
#include <Inventor/SbBox2d.h>
#include <limits>
#include <Inventor/SbBox2f.h>
#include <Inventor/SbBox2s.h>
#include <Inventor/SbBox2i32.h>
#if COIN_DEBUG
#include <Inventor/errors/SoDebugError.h>
#endif // COIN_DEBUG
/*!
\fn SbBox2d::SbBox2d(void)
The default constructor makes an empty box.
*/
/*!
\fn SbBox2d::SbBox2d(double xmin, double ymin, double xmax, double ymax)
Constructs a box with the given corners.
\a xmin should be less than \a xmax and \a ymin should be less than
\a ymax if you want to make a valid box.
*/
/*!
\fn SbBox2d::SbBox2d(const SbVec2d & min, const SbVec2d & max)
Constructs a box with the given lower left and upper right corners.
The coordinates of \a min should be less than the coordinates of
\a max if you want to make a valid box.
*/
/*!
\fn SbBox2d & SbBox2d::setBounds(double xmin, double ymin, double xmax, double ymax)
Reset the boundaries of the box.
\a xmin should be less than \a xmax and \a ymin should be less than
\a ymax if you want to make a valid box.
Returns reference to self.
\sa getBounds().
*/
/*!
\fn SbBox2d & SbBox2d::setBounds(const SbVec2d & min, const SbVec2d & max)
Reset the boundaries of the box with the given corners.
The coordinates of \a min should be less than the coordinates of
\a max if you want to make a valid box.
Returns reference to self.
\sa getBounds().
*/
/*!
Reset the boundaries of the box with the given \a box boundaries.
Returns reference to self.
\sa getBounds()
*/
SbBox2d &
SbBox2d::setBounds(const SbBox2f & box)
{
if (box.isEmpty()) {
makeEmpty();
} else {
minpt.setValue(box.getMin());
maxpt.setValue(box.getMax());
}
return *this;
}
/*!
Reset the boundaries of the box with the given \a box boundaries.
Returns reference to self.
\sa getBounds()
*/
SbBox2d &
SbBox2d::setBounds(const SbBox2s & box)
{
if (box.isEmpty()) {
makeEmpty();
} else {
minpt.setValue(box.getMin());
maxpt.setValue(box.getMax());
}
return *this;
}
/*!
Reset the boundaries of the box with the given \a box boundaries.
Returns reference to self.
\sa getBounds()
*/
SbBox2d &
SbBox2d::setBounds(const SbBox2i32 & box)
{
if (box.isEmpty()) {
makeEmpty();
} else {
minpt.setValue(box.getMin());
maxpt.setValue(box.getMax());
}
return *this;
}
/*!
Marks this as an empty box.
\sa isEmpty().
*/
void
SbBox2d::makeEmpty(void)
{
minpt.setValue(std::numeric_limits<double>::max(), std::numeric_limits<double>::max());
maxpt.setValue(-std::numeric_limits<double>::max(), -std::numeric_limits<double>::max());
}
/*!
\fn SbBool SbBox2d::isEmpty(void) const
Check if this has been marked as an empty box.
\sa makeEmpty().
*/
/*!
\fn SbBool SbBox2d::hasArea(void) const
Check if the box has "positive" area, i.e. the lower left corner is
actually lower and more to the left than the other corner point.
*/
/*!
\fn const SbVec2d & SbBox2d::getMin(void) const
Returns the lower left corner of the box.
\sa getOrigin(), getMax().
*/
/*!
\fn SbVec2d & SbBox2d::getMin(void)
Returns the lower left corner of the box.
\sa getOrigin(), getMax().
*/
/*!
\fn const SbVec2d & SbBox2d::getMax(void) const
Returns the upper right corner of the box.
\sa getMin().
*/
/*!
\fn SbVec2d & SbBox2d::getMax(void)
Returns the upper right corner of the box.
\sa getMin().
*/
/*!
\fn SbVec2d SbBox2d::getCenter(void) const
Returns the center point of the box.
*/
/*!
Extend the boundaries of the box by the given point, i.e. make the
box fit around the \a point if it isn't already situated within it.
*/
void
SbBox2d::extendBy(const SbVec2d & point)
{
// The explicit cast to double is done to humour the HPUX aCC
// compiler, which will otherwise say ``Template deduction failed to
// find a match for the call to 'SbMin'''. mortene.
this->minpt.setValue(SbMin(static_cast<double>(point[0]), static_cast<double>(this->minpt[0])),
SbMin(static_cast<double>(point[1]), static_cast<double>(this->minpt[1])));
this->maxpt.setValue(SbMax(static_cast<double>(point[0]), static_cast<double>(this->maxpt[0])),
SbMax(static_cast<double>(point[1]), static_cast<double>(this->maxpt[1])));
}
/*!
Extend the boundaries of the box by the given \a box parameter. This
is equal to calling the above method twice with the corner points.
*/
void
SbBox2d::extendBy(const SbBox2d & box)
{
if (box.isEmpty()) { return; }
this->extendBy(box.getMin());
this->extendBy(box.getMax());
}
/*!
Check if \a point lies within the boundaries of this box.
*/
SbBool
SbBox2d::intersect(const SbVec2d & point) const
{
if ((point[0] >= this->minpt[0]) && (point[0] <= this->maxpt[0]) &&
(point[1] >= this->minpt[1]) && (point[1] <= this->maxpt[1])) return TRUE;
return FALSE;
}
/*!
Check if \a box lies wholly or partly within the boundaries
of this box.
*/
SbBool
SbBox2d::intersect(const SbBox2d & box) const
{
if ((box.getMax()[0] < this->getMin()[0]) ||
(box.getMax()[1] < this->getMin()[1]) ||
(box.getMin()[0] > this->getMax()[0]) ||
(box.getMin()[1] > this->getMax()[1])) return FALSE;
return TRUE;
}
/*!
Check if a a line from \a a to \a b intersects the box, and return the
coordinates of the union line in \a ia and \a ib.
This function is a Coin extension.
*/
SbBool
SbBox2d::findIntersection(const SbVec2d & a, const SbVec2d & b, SbVec2d & ia, SbVec2d & ib) const
{
// FIXME: this function should be tested thoroughly...
// we place point a and b in their respective blocks, and handle cases accordingly
//
// block-ids intersection
// 6 | 7 | 8 candidates
// ---+---+--- +-8-+
// 3 | 4 | 5 2 4
// ---+---+--- +-1-+
// 0 | 1 | 2
static int candidates[9] = { 1|2, 1, 1|4, 2, 0, 4, 2|8, 8, 4|8 };
int blocka = 0, blockb = 0;
if ( a[0] < this->minpt[0] ) blocka += 0;
else if ( a[0] <= this->maxpt[0] ) blocka += 1;
else blocka += 2;
if ( a[1] < this->minpt[1] ) blocka += 0;
else if ( a[1] <= this->maxpt[1] ) blocka += 3;
else blocka = +6;
if ( b[0] < this->minpt[0] ) blockb += 0;
else if ( b[0] <= this->maxpt[0] ) blockb += 1;
else blockb += 2;
if ( b[1] < this->minpt[1] ) blockb += 0;
else if ( b[1] <= this->maxpt[1] ) blockb += 3;
else blockb += 6;
int enterwalls = candidates[blocka];
int leavewalls = candidates[blockb];
// both a and b can be outside box in the same way
if ( (enterwalls & leavewalls) != 0 ) return FALSE;
SbBool foundia = FALSE;
if ( blocka == 4 ) {
ia = a;
foundia = TRUE;
}
if ( !foundia && (enterwalls & 1) ) {
do {
if ( blockb == 0 || blockb == 1 || blockb == 2 ) break;
SbVec2d vec = b - a;
double t = (this->minpt[1] - a[1]) / vec[1];
if ( t < 0.0 || t > 1.0 ) break;
ia = a + vec * t;
if ( ia[0] < this->minpt[0] || ia[0] > this->maxpt[0] ) break;
foundia = TRUE;
} while ( FALSE );
}
if ( !foundia && (enterwalls & 2) ) {
do {
if ( blockb == 0 || blockb == 3 || blockb == 6 ) break;
SbVec2d vec = b - a;
double t = (this->minpt[0] - a[0]) / vec[0];
if ( t < 0.0 || t > 1.0 ) break;
ia = a + vec * t;
if ( ia[1] < this->minpt[1] || ia[1] > this->maxpt[1] ) break;
foundia = TRUE;
} while ( FALSE );
}
if ( !foundia && (enterwalls & 4) ) {
do {
if ( blockb == 2 || blockb == 5 || blockb == 8 ) break;
SbVec2d vec = b - a;
double t = (this->maxpt[0] - a[0]) / vec[0];
if ( t < 0.0 || t > 1.0 ) break;
ia = a + vec * t;
if ( ia[1] < this->minpt[1] || ia[1] > this->maxpt[1] ) break;
foundia = TRUE;
} while ( FALSE );
}
if ( !foundia && (enterwalls & 8) ) {
do {
if ( blockb == 6 || blockb == 7 || blockb == 8 ) break;
SbVec2d vec = b - a;
double t = (this->maxpt[1] - a[1]) / vec[1];
if ( t < 0.0 || t > 1.0 ) break;
ia = a + vec * t;
if ( ia[0] < this->minpt[0] || ia[0] > this->maxpt[0] ) break;
foundia = TRUE;
} while ( FALSE );
}
if ( !foundia ) return FALSE;
SbBool foundib = FALSE;
if ( blockb == 4 ) {
ib = b;
foundib = TRUE;
}
if ( !foundib && (leavewalls & 1) ) {
do {
if ( blocka == 0 || blocka == 1 || blocka == 2 ) break;
SbVec2d vec = a - b;
double t = (this->minpt[1] - b[1]) / vec[1];
if ( t < 0.0 || t > 1.0 ) break;
ib = b + vec * t;
if ( ib[0] < this->minpt[0] || ib[0] > this->maxpt[0] ) break;
foundib = TRUE;
} while ( FALSE );
}
if ( !foundib && (leavewalls & 2) ) {
do {
if ( blocka == 0 || blocka == 3 || blocka == 6 ) break;
SbVec2d vec = a - b;
double t = (this->minpt[0] - b[0]) / vec[0];
if ( t < 0.0 || t > 1.0 ) break;
ib = b + vec * t;
if ( ib[1] < this->minpt[1] || ib[1] > this->maxpt[1] ) break;
foundib = TRUE;
} while ( FALSE );
}
if ( !foundib && (leavewalls & 4) ) {
do {
if ( blocka == 2 || blocka == 5 || blocka == 8 ) break;
SbVec2d vec = a - b;
double t = (this->maxpt[0] - b[0]) / vec[0];
if ( t < 0.0 || t > 1.0 ) break;
ib = b + vec * t;
if ( ib[1] < this->minpt[1] || ib[1] > this->maxpt[1] ) break;
foundib = TRUE;
} while ( FALSE );
}
if ( !foundib && (leavewalls & 8) ) {
do {
if ( blocka == 6 || blocka == 7 || blocka == 8 ) break;
SbVec2d vec = a - b;
double t = (this->maxpt[1] - b[1]) / vec[1];
if ( t < 0.0 || t > 1.0 ) break;
ib = b + vec * t;
if ( ib[0] < this->minpt[0] || ib[0] > this->maxpt[0] ) break;
foundib = TRUE;
} while ( FALSE );
}
if ( !foundib ) return FALSE;
return TRUE;
} // findIntersection()
/*!
Return the point on the box closest to the given point \a p.
*/
SbVec2d
SbBox2d::getClosestPoint(const SbVec2d & p) const
{
SbVec2d closest = p;
SbVec2d center = this->getCenter();
double devx = closest[0] - center[0];
double devy = closest[1] - center[1];
double halfwidth = (maxpt[0] - minpt[0]) / 2.0f;
double halfheight = (maxpt[1] - minpt[1]) / 2.0f;
// Move point to be on the nearest line of the box.
if (fabs(devx) > fabs(devy))
closest[0] = center[0] + halfwidth * ((devx < 0.0f) ? -1.0f : 1.0f);
else
closest[1] = center[1] + halfheight * ((devy < 0.0f) ? -1.0f : 1.0f);
// Clamp to be inside box.
closest[0] = SbMin(SbMax(closest[0], this->minpt[0]), this->maxpt[0]);
closest[1] = SbMin(SbMax(closest[1], this->minpt[1]), this->maxpt[1]);
return closest;
}
/*!
\fn void SbBox2d::getBounds(double & xmin, double & ymin, double & xmax, double & ymax) const
Returns the box boundaries.
\sa setBounds(), getMin(), getMax().
*/
/*!
\fn void SbBox2d::getBounds(SbVec2d & min, SbVec2d & max) const
Returns the box min and max corner points.
\sa setBounds(), getMin(), getMax().
*/
/*!
\fn void SbBox2d::getOrigin(double & originX, double & originY) const
Returns the coordinates of the box origin (i.e. the lower left corner).
\sa getMin().
*/
/*!
\fn void SbBox2d::getSize(double & sizeX, double & sizeY) const
Returns width and height of box.
*/
/*!
\fn double SbBox2d::getAspectRatio(void) const
Returns aspect ratio of box, which is defined as box width divided on
box height.
*/
/*!
\fn int operator == (const SbBox2d & b1, const SbBox2d & b2)
\relates SbBox2d
Check \a b1 and \a b2 for equality.
*/
/*!
\fn int operator != (const SbBox2d & b1, const SbBox2d & b2)
\relates SbBox2d
Check \a b1 and \a b2 for inequality.
*/
|