1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
/**************************************************************************\
*
* This file is part of the Coin 3D visualization library.
* Copyright (C) by Kongsberg Oil & Gas Technologies.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.GPL at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using Coin with software that can not be combined with the GNU
* GPL, and for taking advantage of the additional benefits of our
* support services, please contact Kongsberg Oil & Gas Technologies
* about acquiring a Coin Professional Edition License.
*
* See http://www.coin3d.org/ for more information.
*
* Kongsberg Oil & Gas Technologies, Bygdoy Alle 5, 0257 Oslo, NORWAY.
* http://www.sim.no/ sales@sim.no coin-support@coin3d.org
*
\**************************************************************************/
/*!
\class SbPlane SbPlane.h Inventor/SbLinear.h
\brief The SbPlane class represents a plane in 3D space.
\ingroup base
SbPlane is used by many other classes in Coin. It provides a way of
representing a plane, specified by a plane normal vector and a
distance from the origin of the coordinate system.
*/
#include <cassert>
#include <cstdio>
#include <Inventor/SbPlane.h>
#include <Inventor/SbLine.h>
#include <Inventor/SbVec3d.h>
#include <Inventor/SbMatrix.h>
#include <cfloat>
#if COIN_DEBUG
#include <Inventor/errors/SoDebugError.h>
#endif // COIN_DEBUG
/*!
An SbPlane instantiated with the default constructor will be
uninitialized.
*/
SbPlane::SbPlane(void)
{
}
/*!
Construct an SbPlane instance with a normal pointing in the given
direction and the given shortest distance from the origin of the
coordinate system to a point in the plane.
\a normal must not be a null vector.
*/
SbPlane::SbPlane(const SbVec3f& normalref, const float D)
{
#if COIN_DEBUG
if (normalref.sqrLength() == 0.0f) {
SoDebugError::postWarning("SbPlane::SbPlane",
"Plane normal vector is a null vector.");
}
#endif // COIN_DEBUG
this->normal = normalref;
// we test for a null vector above, just normalize
(void) this->normal.normalize();
this->distance = D;
}
/*!
Construct an SbPlane with three points laying in the plane. Make
sure \a p0, \a p1 and \a p2 are actually three distinct points,
not on a line, when using this constructor.
*/
SbPlane::SbPlane(const SbVec3f& p0, const SbVec3f& p1, const SbVec3f& p2)
{
#if COIN_DEBUG
if(!(p0 != p1 && p1 != p2 && p0 != p2))
SoDebugError::postWarning("SbPlane::SbPlane",
"The three points defining the plane cannot "
"be coincident.");
#endif // COIN_DEBUG
this->normal = (p1 - p0).cross(p2 - p0);
#if COIN_DEBUG
if (this->normal.sqrLength() == 0.0f) {
SoDebugError::postWarning("SbPlane::SbPlane",
"The three points defining the plane cannot "
"be on line.");
}
#endif // COIN_DEBUG
// we test and warn about a null vector above
(void) this->normal.normalize();
// Npoint
// d = -------, |N| == 1
// |N|
this->distance = this->normal.dot(p0);
}
/*!
Construct an SbPlane from a normal and a point laying in the plane.
\a normal must not be a null vector.
*/
SbPlane::SbPlane(const SbVec3f& normalref, const SbVec3f& point)
{
#if COIN_DEBUG
if(normalref.sqrLength() == 0.0f)
SoDebugError::postWarning("SbPlane::SbPlane",
"Plane normal vector is a null vector.");
#endif // COIN_DEBUG
this->normal = normalref;
// we test and warn about a null vector above
(void) this->normal.normalize();
// Npoint
// d = -------, |N| == 1
// |N|
this->distance = this->normal.dot(point);
}
/*!
Add the given offset \a d to the plane distance from the origin.
*/
void
SbPlane::offset(const float d)
{
this->distance += d;
}
/*!
Find the point on given line \a l intersecting the plane and return
it in \a intersection. If the line is parallel to the plane,
we return \c FALSE, otherwise \c TRUE.
Do not pass an invalid line for the \a l parameter (i.e. with a
null direction vector).
*/
SbBool
SbPlane::intersect(const SbLine& l, SbVec3f& intersection) const
{
#if COIN_DEBUG
if (this->normal.sqrLength() == 0.0f) {
SoDebugError::postWarning("SbPlane::intersect",
"Normal vector for plane is null vector");
}
if (l.getDirection().sqrLength() == 0.0f) {
SoDebugError::postWarning("SbPlane::intersect",
"Intersecting line doesn't have a direction.");
}
#endif // COIN_DEBUG
// Check if the line is parallel to the plane.
if((l.getDirection()).dot(this->normal) == 0.0f) return FALSE;
// From the discussion on SbLine::getClosestPoint() we know that
// any point on the line can be expressed as:
// Q = P + t*D (1)
//
// We can also easily see that a point must satisfy this equation to lie
// in the plane:
// N(Q - d*N) = 0, where N is the normal vector,
// Q is the point and d the offset
// from the origin.
//
// Combining these two equations and simplifying we get:
//
// d*|N| - NP
// t = ----------------, |N| == 1
// ND
//
// Substituting t back in (1), we've solved the problem.
// 19980816 mortene.
float t =
(this->distance - this->normal.dot(l.getPosition()))
/ this->normal.dot(l.getDirection());
intersection = l.getPosition() + t * l.getDirection();
return TRUE;
}
/*!
Transform the plane by \a matrix.
\sa offset()
*/
void
SbPlane::transform(const SbMatrix& matrix)
{
SbVec3f ptInPlane = this->normal * this->distance;
// according to discussions on comp.graphics.algorithms, the inverse
// transpose matrix should be used to rotate the plane normal.
SbMatrix invtransp = matrix.inverse().transpose();
invtransp.multDirMatrix(this->normal, this->normal);
// the point should be transformed using the original matrix
matrix.multVecMatrix(ptInPlane, ptInPlane);
if (this->normal.normalize() == 0.0f) {
#if COIN_DEBUG
SoDebugError::postWarning("SbPlane::transform",
"The transformation invalidated the plane.");
#endif // COIN_DEBUG
}
this->distance = this->normal.dot(ptInPlane);
}
/*!
Check if the given point lies in the halfspace of the plane which the
plane normal vector is pointing.
*/
SbBool
SbPlane::isInHalfSpace(const SbVec3f& point) const
{
return this->getDistance(point) >= 0.0f;
}
/*!
Return the distance from \a point to plane. Positive distance means
the point is in the plane's half space.
This method is an extension specific to Coin versus the original SGI
Inventor API.
*/
float
SbPlane::getDistance(const SbVec3f &point) const
{
// convert to double before doing the dot product to increase precision of the result
SbVec3d dp(point);
SbVec3d dn(this->normal);
return static_cast<float> (dp.dot(dn)) - this->distance;
}
/*!
Return the plane's normal vector, which indicates which direction the plane
is oriented.
\sa getDistanceFromOrigin().
*/
const SbVec3f&
SbPlane::getNormal(void) const
{
return this->normal;
}
/*!
Return distance from origin of coordinate system to the point in the plane
which is closest to the origin.
\sa getNormal().
*/
float
SbPlane::getDistanceFromOrigin(void) const
{
return this->distance;
}
/*!
Intersect this plane with \a pl, and return the resulting line in \a
line. Returns \c TRUE if an intersection line can be found, and \c
FALSE if the planes are parallel.
Please note that the resulting SbLine must be considered as a
\e line intersecting the SbLine's origin, extending infinitely in both
directions.
\COIN_FUNCTION_EXTENSION
\since Coin 2.0
*/
SbBool
SbPlane::intersect(const SbPlane & pl, SbLine & line) const
{
// Based on code from Graphics Gems III, Plane-to-Plane Intersection
// by Priamos Georgiades
float invdet; // inverse of 2x2 matrix determinant
SbVec3f dir2; // holds the squares of the coordinates of xdir
SbVec3f xpt;
SbVec3f xdir;
xdir = this->normal.cross(pl.normal);
dir2[0] = xdir[0] * xdir[0];
dir2[1] = xdir[1] * xdir[1];
dir2[2] = xdir[2] * xdir[2];
const SbVec3f & pl1n = this->normal;
const SbVec3f & pl2n = pl.normal;
const float pl1w = -this->distance;
const float pl2w = -pl.distance;
if ((dir2[2] > dir2[1]) && (dir2[2] > dir2[0]) && (dir2[2] > FLT_EPSILON)) {
// then get a point on the XY plane
invdet = 1.0f / xdir[2];
xpt = SbVec3f(pl1n[1] * pl2w - pl2n[1] * pl1w,
pl2n[0] * pl1w - pl1n[0] * pl2w, 0.0f);
}
else if ((dir2[1] > dir2[0]) && (dir2[1] > FLT_EPSILON)) {
// then get a point on the XZ plane
invdet = - 1.0f / xdir[1];
xpt = SbVec3f(pl1n[2] * pl2w - pl2n[2] * pl1w, 0.0f,
pl2n[0] * pl1w - pl1n[0] * pl2w);
}
else if (dir2[0] > FLT_EPSILON) {
// then get a point on the YZ plane
invdet = 1.0f / xdir[0];
xpt = SbVec3f(0.0f, pl1n[2] * pl2w - pl2n[2] * pl1w,
pl2n[1] * pl1w - pl1n[1] * pl2w);
}
else // xdir is zero, then no point of intersection exists
return FALSE;
xpt *= invdet;
invdet = 1.0f / static_cast<float>(sqrt(dir2[0] + dir2[1] + dir2[2]));
xdir *= invdet;
line = SbLine(xpt, xpt + xdir);
return TRUE;
}
/*!
\relates SbPlane
Check the two given planes for equality.
*/
int
operator ==(const SbPlane& p1, const SbPlane& p2)
{
if(p1.getDistanceFromOrigin() == p2.getDistanceFromOrigin() &&
p1.getNormal() == p2.getNormal()) return TRUE;
return FALSE;
}
/*!
\relates SbPlane
Check the two given planes for unequality.
*/
int
operator !=(const SbPlane& p1, const SbPlane& p2)
{
return !(p1 == p2);
}
/*!
Dump the state of this object to the \a file stream. Only works in
debug version of library, method does nothing in an optimized build.
*/
void
SbPlane::print(FILE * fp) const
{
#if COIN_DEBUG
this->getNormal().print(fp);
(void)fprintf(fp, " %f", this->getDistanceFromOrigin());
#endif // COIN_DEBUG
}
|