1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
|
/**************************************************************************\
*
* This file is part of the Coin 3D visualization library.
* Copyright (C) by Kongsberg Oil & Gas Technologies.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.GPL at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using Coin with software that can not be combined with the GNU
* GPL, and for taking advantage of the additional benefits of our
* support services, please contact Kongsberg Oil & Gas Technologies
* about acquiring a Coin Professional Edition License.
*
* See http://www.coin3d.org/ for more information.
*
* Kongsberg Oil & Gas Technologies, Bygdoy Alle 5, 0257 Oslo, NORWAY.
* http://www.sim.no/ sales@sim.no coin-support@coin3d.org
*
\**************************************************************************/
/*!
\class SbRotation SbLinear.h Inventor/SbLinear.h
\brief The SbRotation class represents a rotation in 3D space.
\ingroup base
SbRotation is used extensively throughout the Coin library.
An SbRotation is stored internally as a quaternion for speed and
storage reasons, but inquiries can be done to get and set axis and
angle values for convenience.
Note that there is one \e very common mistake that is easy to make
when setting the value of an SbRotation, and that is to
inadvertently use the wrong SbRotation constructor. This example
should clarify the problem:
\code
SbRotation rotation(0, 0, 1, 1.5707963f);
\endcode
The programmer clearly tries to set a PI/2 rotation around the Z
axis, but this will fail, as the SbRotation constructor invoked
above is the one that takes as arguments the 4 floats of a \e
quaternion. What the programmer almost certainly wanted to do was to
use the SbRotation constructor that takes a rotation vector and a
rotation angle, which is invoked like this:
\code
SbRotation rotation(SbVec3f(0, 0, 1), 1.5707963f);
\endcode
Another common problem is to set the rotation value to exactly 0.0,
while wanting to store just the information about a rotation \e
angle: rotations are internally handled as quaternions, and when
converting from an angle and a rotation value to a quaternion
representation, the information about the angle "gets lost" if there
is no actual rotation.
\sa SbMatrix
*/
#include <Inventor/SbRotation.h>
#include <Inventor/SbVec3f.h>
#include <Inventor/SbMatrix.h>
#include <cassert>
#include <cfloat>
#if COIN_DEBUG
#include <Inventor/errors/SoDebugError.h>
#endif // COIN_DEBUG
/*!
The default constructor just initializes a valid rotation. The
actual value is unspecified, and you should not depend on it.
*/
SbRotation::SbRotation(void)
// This translates to zero rotation around the positive Z axis.
: quat(0.0f, 0.0f, 0.0f, 1.0f)
{
}
/*!
Construct a new SbRotation object initialized with the given
axis-of-rotation and rotation angle.
*/
SbRotation::SbRotation(const SbVec3f & axis, const float radians)
{
#if COIN_DEBUG
if (axis.length()==0.0f)
SoDebugError::postWarning("SbRotation::SbRotation",
"axis parameter has zero length => "
"undefined axis.");
#endif // COIN_DEBUG
this->setValue(axis, radians);
}
/*!
Construct a new SbRotation object initialized with the given quaternion
components.
The array must be ordered as follows:
q[0] = x, q[1] = y, q[2] = z and q[3] = w, where the quaternion is
specified by q=w+xi+yj+zk.
*/
SbRotation::SbRotation(const float q[4])
{
this->setValue(q);
}
/*!
Construct a new SbRotation object initialized with the given quaternion
components.
*/
SbRotation::SbRotation(const float q0, const float q1,
const float q2, const float q3)
{
this->setValue(q0, q1, q2, q3);
}
/*!
Construct a new SbRotation object initialized with the given rotation
matrix.
*/
SbRotation::SbRotation(const SbMatrix & m)
{
this->setValue(m);
}
/*!
Construct a rotation which is the minimum rotation necessary to make
vector \a rotateFrom point in the direction of vector \a rotateTo.
Example:
\code
#include <Inventor/SbRotation.h>
#include <Inventor/SbVec3f.h>
#include <cstdio>
int
main(void)
{
SbVec3f from(10, 0, 0);
SbVec3f to(0, 10, 0);
SbRotation rot(from, to);
SbVec3f axis;
float angle;
rot.getValue(axis, angle);
axis.print(stdout);
printf(" angle==%f\n", angle);
return 0;
}
\endcode
*/
SbRotation::SbRotation(const SbVec3f & rotateFrom, const SbVec3f & rotateTo)
{
// Parameters are checked in setValue().
this->setValue(rotateFrom, rotateTo);
}
/*!
Return pointer to an array with the rotation expressed as four
quaternion values.
\sa setValue().
*/
const float *
SbRotation::getValue(void) const
{
return &this->quat[0];
}
/*!
Return the four quaternion components representing the rotation.
\sa setValue().
*/
void
SbRotation::getValue(float & q0, float & q1, float & q2, float & q3) const
{
q0 = this->quat[0];
q1 = this->quat[1];
q2 = this->quat[2];
q3 = this->quat[3];
}
/*!
Set the rotation.
\sa getValue().
*/
SbRotation &
SbRotation::setValue(const float q0, const float q1,
const float q2, const float q3)
{
this->quat[0] = q0;
this->quat[1] = q1;
this->quat[2] = q2;
this->quat[3] = q3;
if (this->quat.normalize() == 0.0f) {
#if COIN_DEBUG
SoDebugError::postWarning("SbRotation::setValue",
"Quarternion has zero length => "
"undefined rotation.");
#endif // COIN_DEBUG
}
return *this;
}
/*!
Return the rotation in the form of an axis-of-rotation and a rotation
angle.
\sa setValue().
*/
void
SbRotation::getValue(SbVec3f & axis, float & radians) const
{
if((this->quat[3] >= -1.0f) && (this->quat[3] <= 1.0f)) {
radians = float(acos(this->quat[3])) * 2.0f;
float scale = static_cast<float>(sin(radians / 2.0f));
if(scale != 0.0f) {
axis[0] = this->quat[0] / scale;
axis[1] = this->quat[1] / scale;
axis[2] = this->quat[2] / scale;
// FIXME: why not just flip the sign on each component according
// to "scale" and normalize the axis instead? 20010111 mortene.
return;
}
}
// Quaternion can't be converted to axis and rotation angle, so we just
// set up values to indicate this.
axis.setValue(0.0f, 0.0f, 1.0f);
radians = 0.0f;
}
/*!
Return this rotation in the form of a matrix.
\sa setValue().
*/
void
SbRotation::getValue(SbMatrix & matrix) const
{
// From:
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/index.htm
float l = this->quat.length();
float x,y,z,w;
if (l > FLT_EPSILON) {
// normalize it
x = this->quat[0] / l;
y = this->quat[1] / l;
z = this->quat[2] / l;
w = this->quat[3] / l;
}
else {
// identity
x = y = z = 0.0f;
w = 1.0f;
}
matrix[0][0] = 1.0f - 2.0f * (y * y + z * z);
matrix[0][1] = 2.0f * (x * y + z * w);
matrix[0][2] = 2.0f * (z * x - y * w);
matrix[0][3] = 0.0f;
matrix[1][0] = 2.0f * (x * y - z * w);
matrix[1][1] = 1.0f - 2.0f * (z * z + x * x);
matrix[1][2] = 2.0f * (y * z + x * w);
matrix[1][3] = 0;
matrix[2][0] = 2.0f * (z * x + y * w);
matrix[2][1] = 2.0f * (y * z - x * w);
matrix[2][2] = 1.0f - 2.0f * (y * y + x * x);
matrix[2][3] = 0.0f;
matrix[3][0] = 0.0f;
matrix[3][1] = 0.0f;
matrix[3][2] = 0.0f;
matrix[3][3] = 1.0f;
}
/*!
Invert the rotation. Returns reference to self.
\sa inverse()
*/
SbRotation &
SbRotation::invert(void)
{
float length = this->quat.length();
#if COIN_DEBUG
if (length==0.0f)
SoDebugError::postWarning("SbRotation::invert",
"Quarternion has zero length => "
"undefined rotation.");
#endif // COIN_DEBUG
// Optimize by doing 1 div and 4 muls instead of 4 divs.
float inv = 1.0f / length;
this->quat[0] = -this->quat[0] * inv;
this->quat[1] = -this->quat[1] * inv;
this->quat[2] = -this->quat[2] * inv;
this->quat[3] = this->quat[3] * inv;
return *this;
}
/*!
Non-destructively inverses the rotation and returns the result.
\sa invert()
*/
SbRotation
SbRotation::inverse(void) const
{
float length = this->quat.length();
#if COIN_DEBUG
if (length==0.0f)
SoDebugError::postWarning("SbRotation::inverse",
"Quaternion has zero length => "
"undefined rotation.");
#endif // COIN_DEBUG
// Optimize by doing 1 div and 4 muls instead of 4 divs.
float inv = 1.0f / length;
SbRotation rot;
rot.quat[0] = -this->quat[0] * inv;
rot.quat[1] = -this->quat[1] * inv;
rot.quat[2] = -this->quat[2] * inv;
rot.quat[3] = this->quat[3] * inv;
return rot;
}
/*!
Reset the rotation by the four quaternions in the array.
\sa getValue().
*/
SbRotation&
SbRotation::setValue(const float q[4])
{
this->quat[0] = q[0];
this->quat[1] = q[1];
this->quat[2] = q[2];
this->quat[3] = q[3];
if (this->quat.normalize() == 0.0f) {
#if COIN_DEBUG
SoDebugError::postWarning("SbRotation::setValue",
"Quarternion has zero length => "
"undefined rotation.");
#endif // COIN_DEBUG
}
return *this;
}
/*!
Set the rotation from the components of the given matrix. Returns
reference to self.
\sa getValue().
*/
SbRotation &
SbRotation::setValue(const SbMatrix & m)
{
float scalerow = m[0][0] + m[1][1] + m[2][2];
if (scalerow > 0.0f) {
float s = static_cast<float>(sqrt(scalerow + m[3][3]));
this->quat[3] = s * 0.5f;
s = 0.5f / s;
this->quat[0] = (m[1][2] - m[2][1]) * s;
this->quat[1] = (m[2][0] - m[0][2]) * s;
this->quat[2] = (m[0][1] - m[1][0]) * s;
}
else {
int i = 0;
if (m[1][1] > m[0][0]) i = 1;
if (m[2][2] > m[i][i]) i = 2;
int j = (i+1)%3;
int k = (j+1)%3;
float s = static_cast<float>(sqrt((m[i][i] - (m[j][j] + m[k][k])) + m[3][3]));
this->quat[i] = s * 0.5f;
s = 0.5f / s;
this->quat[3] = (m[j][k] - m[k][j]) * s;
this->quat[j] = (m[i][j] + m[j][i]) * s;
this->quat[k] = (m[i][k] + m[k][i]) * s;
}
if (m[3][3] != 1.0f) this->operator*=(1.0f/static_cast<float>(sqrt(m[3][3])));
return *this;
}
/*!
Reset rotation with the given axis-of-rotation and rotation angle.
Returns reference to self.
Make sure \a axis is not the null vector when calling this method.
\sa getValue().
*/
SbRotation &
SbRotation::setValue(const SbVec3f & axis, const float radians)
{
#if COIN_DEBUG
if (axis.length()==0.0f)
SoDebugError::postWarning("SbRotation::setValue",
"axis parameter has zero length.");
#endif // COIN_DEBUG
// From <http://www.automation.hut.fi/~jaro/thesis/hyper/node9.html>.
this->quat[3] = static_cast<float>(cos(radians/2));
const float sineval = static_cast<float>(sin(radians/2));
SbVec3f a = axis;
// we test for a null vector above
(void) a.normalize();
this->quat[0] = a[0] * sineval;
this->quat[1] = a[1] * sineval;
this->quat[2] = a[2] * sineval;
return *this;
}
/*!
Construct a rotation which is the minimum rotation necessary to make
vector \a rotateFrom point in the direction of vector \a rotateTo.
Returns reference to self.
See SbRotation constructor with corresponding input arguments for a
simple code example.
\sa getValue().
*/
SbRotation &
SbRotation::setValue(const SbVec3f & rotateFrom, const SbVec3f & rotateTo)
{
#if COIN_DEBUG
// Check if the vectors are valid.
if (rotateFrom.length()==0.0f) {
SoDebugError::postWarning("SbRotation::setValue",
"rotateFrom argument has zero length.");
}
if (rotateTo.length()==0.0f) {
SoDebugError::postWarning("SbRotation::setValue",
"rotateTo argument has zero length.");
}
#endif // COIN_DEBUG
SbVec3f from(rotateFrom);
// we test for a null vector above
(void) from.normalize();
SbVec3f to(rotateTo);
// we test for a null vector above
(void) to.normalize();
const float dot = from.dot(to);
SbVec3f crossvec = from.cross(to);
const float crosslen = crossvec.normalize();
if (crosslen == 0.0f) { // Parallel vectors
// Check if they are pointing in the same direction.
if (dot > 0.0f) {
this->setValue(0.0f, 0.0f, 0.0f, 1.0f);
}
// Ok, so they are parallel and pointing in the opposite direction
// of each other.
else {
// Try crossing with x axis.
SbVec3f t = from.cross(SbVec3f(1.0f, 0.0f, 0.0f));
// If not ok, cross with y axis.
if (t.normalize() == 0.0f) {
t = from.cross(SbVec3f(0.0f, 1.0f, 0.0f));
(void) t.normalize();
}
this->setValue(t[0], t[1], t[2], 0.0f);
}
}
else { // Vectors are not parallel
// The fabs() wrapping is to avoid problems when `dot' "overflows"
// a tiny wee bit, which can lead to sqrt() returning NaN.
crossvec *= static_cast<float>(sqrt(0.5f * fabs(1.0f - dot)));
// The fabs() wrapping is to avoid problems when `dot' "underflows"
// a tiny wee bit, which can lead to sqrt() returning NaN.
this->setValue(crossvec[0], crossvec[1], crossvec[2],
static_cast<float>(sqrt(0.5 * fabs(1.0 + dot))));
}
return *this;
}
/*!
Multiplies the quaternions.
Note that order is important when combining quaternions with the
multiplication operator.
*/
SbRotation &
SbRotation::operator*=(const SbRotation & q)
{
// Formula from <http://www.lboro.ac.uk/departments/ma/gallery/quat/>
float tx, ty, tz, tw;
this->getValue(tx, ty, tz, tw);
float qx, qy, qz, qw;
q.getValue(qx, qy, qz, qw);
this->setValue(qw*tx + qx*tw + qy*tz - qz*ty,
qw*ty - qx*tz + qy*tw + qz*tx,
qw*tz + qx*ty - qy*tx + qz*tw,
qw*tw - qx*tx - qy*ty - qz*tz);
return *this;
}
/*!
Multiplies components of quaternion with scalar value \a s.
Returns reference to self.
*/
SbRotation &
SbRotation::operator*=(const float s)
{
this->quat *= s;
return *this;
}
/*!
\relates SbRotation
Check if the two rotations are equal.
\sa equals().
*/
int
operator==(const SbRotation & q1, const SbRotation & q2)
{
return (q1.quat == q2.quat);
}
/*!
\relates SbRotation
Check if the two rotations are unequal.
\sa equals().
*/
int
operator!=(const SbRotation & q1, const SbRotation & q2)
{
return !(q1 == q2);
}
/*!
Check the internal quaternion representation vectors for equality
within the given tolerance.
*/
SbBool
SbRotation::equals(const SbRotation & r, const float tolerance) const
{
return this->quat.equals(r.quat, tolerance);
}
/*!
\relates SbRotation
Multiplies the two rotations and returns the result.
Note that order is important when combining quaternions with the
multiplication operator.
*/
SbRotation
operator*(const SbRotation & q1, const SbRotation & q2)
{
SbRotation q(q1);
q *= q2;
return q;
}
/*!
Rotate the \a src vector and put the result in \a dst.
It is safe to let src and dst be the same SbVec3f instance.
*/
void
SbRotation::multVec(const SbVec3f & src, SbVec3f & dst) const
{
SbVec3f qv(this->quat[0], this->quat[1], this->quat[2]);
float r = this->quat[3];
SbVec3f a = qv.cross(src);
SbVec3f b = qv.cross(a);
dst = src + 2.0f * (r * a + b);
}
/*!
Scale the angle of rotation by \a scaleFactor.
*/
void
SbRotation::scaleAngle(const float scaleFactor)
{
SbVec3f axis;
float rad;
this->getValue(axis, rad);
this->setValue(axis, rad * scaleFactor);
}
/*!
\relates SbRotation
Interpolates along the shortest path between the two rotation
positions (from \a rot0 to \a rot1).
Returns the SbRotation which will rotate \a rot0 the given part \a t
of the spherical distance towards \a rot1, where \a t=0 will yield \a rot0
and \a t=1 will yield \a rot1.
\a t should be in the interval [0, 1].
*/
SbRotation
SbRotation::slerp(const SbRotation & rot0, const SbRotation & rot1, float t)
{
#if COIN_DEBUG
if (t<0.0f || t>1.0f) {
SoDebugError::postWarning("SbRotation::slerp",
"The t parameter (%f) is out of bounds [0,1]. "
"Clamping to bounds.", t);
if (t<0.0f) t=0.0f;
else if (t>1.0f) t=1.0f;
}
#endif // COIN_DEBUG
SbRotation from = rot0;
SbRotation to = rot1;
float dot = from.quat.dot(to.quat);
// Find the correct direction of the interpolation.
if(dot < 0.0f) {
dot = -dot;
to.quat.negate();
}
// fallback to linear interpolation, in case we run out of floating
// point precision
float scale0 = 1.0f - t;
float scale1 = t;
if ((1.0f - dot) > FLT_EPSILON) {
float angle = static_cast<float>(acos(dot));
float sinangle = static_cast<float>(sin(angle));
if (sinangle > FLT_EPSILON) {
// calculate spherical interpolation
scale0 = float(sin((1.0 - t) * angle)) / sinangle;
scale1 = float(sin(t * angle)) / sinangle;
}
}
SbVec4f vec = (scale0 * from.quat) + (scale1 * to.quat);
return SbRotation(vec[0], vec[1], vec[2], vec[3]);
}
/*!
Returns an identity rotation.
*/
SbRotation
SbRotation::identity(void)
{
return SbRotation(0.0f, 0.0f, 0.0f, 1.0f);
}
/*!
Dump the state of this object to the \a fp file stream. Only works
in debug version of library, method does nothing in an optimized
compile.
*/
void
SbRotation::print(FILE * fp) const
{
#if COIN_DEBUG
this->quat.print(fp);
#endif // COIN_DEBUG
}
|