1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
|
/**************************************************************************\
*
* This file is part of the Coin 3D visualization library.
* Copyright (C) by Kongsberg Oil & Gas Technologies.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.GPL at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using Coin with software that can not be combined with the GNU
* GPL, and for taking advantage of the additional benefits of our
* support services, please contact Kongsberg Oil & Gas Technologies
* about acquiring a Coin Professional Edition License.
*
* See http://www.coin3d.org/ for more information.
*
* Kongsberg Oil & Gas Technologies, Bygdoy Alle 5, 0257 Oslo, NORWAY.
* http://www.sim.no/ sales@sim.no coin-support@coin3d.org
*
\**************************************************************************/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif // HAVE_CONFIG_H
#ifdef HAVE_VRML97
/*!
\class SoVRMLExtrusion SoVRMLExtrusion.h Inventor/VRMLnodes/SoVRMLExtrusion.h
\brief The SoVRMLExtrusion class is a a geometry node for extruding a cross section along a spine.
\ingroup VRMLnodes
\WEB3DCOPYRIGHT
\verbatim
Extrusion {
eventIn MFVec2f set_crossSection
eventIn MFRotation set_orientation
eventIn MFVec2f set_scale
eventIn MFVec3f set_spine
field SFBool beginCap TRUE
field SFBool ccw TRUE
field SFBool convex TRUE
field SFFloat creaseAngle 0 # [0,inf)
field MFVec2f crossSection [ 1 1, 1 -1, -1 -1, -1 1, 1 1 ] # (-inf,inf)
field SFBool endCap TRUE
field MFRotation orientation 0 0 1 0 # [-1,1],(-inf,inf)
field MFVec2f scale 1 1 # (0,inf)
field SFBool solid TRUE
field MFVec3f spine [ 0 0 0, 0 1 0 ] # (-inf,inf)
}
\endverbatim
\e Introduction
The Extrusion node specifies geometric shapes based on a two
dimensional cross-section extruded along a three dimensional spine
in the local coordinate system. The cross-section can be scaled and
rotated at each spine point to produce a wide variety of shapes. An
Extrusion node is defined by:
\li a 2D crossSection piecewise linear curve (described as a series
of connected vertices);
\li a 3D spine piecewise linear curve (also described as a series
of connected vertices);
\li a list of 2D scale parameters;
\li a list of 3D orientation parameters.
\e Algorithmic \e description
Shapes are constructed as follows. The cross-section curve, which
starts as a curve in the Y=0 plane, is first scaled about the origin
by the first scale parameter (first value scales in X, second value
scales in Z). It is then translated by the first spine point and
oriented using the first orientation parameter (as explained
later). The same procedure is followed to place a cross- section at
the second spine point, using the second scale and orientation
values. Corresponding vertices of the first and second
cross-sections are then connected, forming a quadrilateral polygon
between each pair of vertices. This same procedure is then repeated
for the rest of the spine points, resulting in a surface extrusion
along the spine.
The final orientation of each cross-section is computed by first
orienting it relative to the spine segments on either side of point
at which the cross-section is placed. This is known as the
spine-aligned cross-section plane (SCP), and is designed to provide
a smooth transition from one spine segment to the next (see Figure
6.6). The SCP is then rotated by the corresponding orientation
value. This rotation is performed relative to the SCP. For example,
to impart twist in the cross- section, a rotation about the Y-axis
(0 1 0) would be used. Other orientations are valid and rotate the
cross-section out of the SCP.
<center>
<img src="http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/Images/Extrusion.gif">
Figure 6.6
</center>
The SCP is computed by first computing its Y-axis and Z-axis, then
taking the cross product of these to determine the X-axis. These
three axes are then used to determine the rotation value needed to
rotate the Y=0 plane to the SCP. This results in a plane that is the
approximate tangent of the spine at each point, as shown in Figure
6.6. First the Y-axis is determined, as follows:
Let n be the number of spines and let i be the index variable
satisfying 0 <= i < n:
\li For all points other than the first or last: The Y-axis for
spine[i] is found by normalizing the vector defined by (spine[i+1]
- spine[i-1]).
\li If the spine curve is closed: The SCP for the first and last
points is the same and is found using (spine[1] - spine[n-2])
to compute the Y-axis.
\li If the spine curve is not closed: The Y-axis used for the
first point is the vector from spine[0] to spine[1], and for the
last it is the vector from spine[n-2] to spine[n-1].
The Z-axis is determined as follows:
\li For all points other than the first or last: Take the following
cross-product:
\verbatim
Z = (spine[i+1] - spine[i]) (spine[i-1] - spine[i])
\endverbatim
\li If the spine curve is closed: The SCP for the first and last
points is the same and is found by taking the following cross- product:
\verbatim
Z = (spine[1] - spine[0]) (spine[n-2] - spine[0])
\endverbatim
\li If the spine curve is not closed: The Z-axis used for the first
spine point is the same as the Z-axis for spine[1]. The Z- axis used for
the last spine point is the same as the Z-axis for spine[n-2].
\li After determining the Z-axis, its dot product with the Z-axis of the
previous spine point is computed. If this value is negative, the
Z-axis is flipped (multiplied by -1). In most cases, this prevents
small changes in the spine segment angles from flipping the
cross-section 180 degrees.
Once the Y- and Z-axes have been computed, the X-axis can be
calculated as their cross-product.
\e Special \e Cases
If the number of scale or orientation values is greater than the
number of spine points, the excess values are ignored. If they
contain one value, it is applied at all spine points. The results
are undefined if the number of scale or orientation values is
greater than one but less than the number of spine points. The scale
values shall be positive.
If the three points used in computing the Z-axis are collinear, the
cross-product is zero so the value from the previous point is used
instead. If the Z-axis of the first point is undefined (because the
spine is not closed and the first two spine segments are collinear)
then the Z-axis for the first spine point with a defined Z-axis is
used.
If the entire spine is collinear, the SCP is computed by finding the
rotation of a vector along the positive Y-axis (v1) to the vector
formed by the spine points (v2). The Y=0 plane is then rotated by
this value. If two points are coincident, they both have the same
SCP. If each point has a different orientation value, then the
surface is constructed by connecting edges of the cross-sections as
normal. This is useful in creating revolved surfaces.
Note: combining coincident and non-coincident spine segments, as
well as other combinations, can lead to interpenetrating surfaces
which the extrusion algorithm makes no attempt to avoid.
\e Common \e Cases
The following common cases are among the effects which are supported
by the Extrusion node:
\li Surfaces of revolution: If the cross-section is an approximation
of a circle and the spine is straight, the Extrusion is equivalent
to a surface of revolution, where the scale parameters define the
size of the cross-section along the spine.
\li Uniform extrusions: If the scale is (1, 1) and the spine is
straight, the cross-section is extruded uniformly without twisting
or scaling along the spine. The result is a cylindrical shape with a
uniform cross section.
\li Bend/twist/taper objects: These shapes are the result of using
all fields. The spine curve bends the extruded shape defined by the
cross-section, the orientation parameters (given as rotations about
the Y-axis) twist it around the spine, and the scale parameters
taper it (by scaling about the spine).
\e Other \e Fields
Extrusion has three parts: the sides, the beginCap (the
surface at the initial end of the spine) and the endCap (the surface
at the final end of the spine). The caps have an associated SFBool field
that indicates whether each exists (TRUE) or doesn't exist (FALSE).
When the beginCap or endCap fields are specified as TRUE, planar cap
surfaces will be generated regardless of whether the crossSection is
a closed curve. If crossSection is not a closed curve, the caps are
generated by adding a final point to crossSection that is equal to
the initial point. An open surface can still have a cap, resulting
(for a simple case) in a shape analogous to a soda can sliced in
half vertically. These surfaces are generated even if spine is also
a closed curve. If a field value is FALSE, the corresponding cap is
not generated.
Texture coordinates are automatically generated by Extrusion
nodes. Textures are mapped so that the coordinates range in the U
direction from 0 to 1 along the crossSection curve (with 0
corresponding to the first point in crossSection and 1 to the last)
and in the V direction from 0 to 1 along the spine curve (with 0
corresponding to the first listed spine point and 1 to the last). If
either the endCap or beginCap exists, the crossSection curve is
uniformly scaled and translated so that the larger dimension of the
cross-section (X or Z) produces texture coordinates that range from
0.0 to 1.0. The beginCap and endCap textures' S and T directions
correspond to the X and Z directions in which the crossSection
coordinates are defined.
The browser shall automatically generate normals for the Extrusion
node,using the creaseAngle field to determine if and how normals are
smoothed across the surface. Normals for the caps are generated
along the Y-axis of the SCP, with the ordering determined by viewing
the cross-section from above (looking along the negative Y-axis of
the SCP). By default, a beginCap with a counterclockwise ordering
shall have a normal along the negative Y-axis. An endCap with a
counterclockwise ordering shall have a normal along the positive
Y-axis.
Each quadrilateral making up the sides of the extrusion are ordered
from the bottom cross-section (the one at the earlier spine point)
to the top. So, one quadrilateral has the points:
\verbatim
spine[0](crossSection[0], crossSection[1])
spine[1](crossSection[1], crossSection[0])
\endverbatim
in that order. By default, normals for the sides are generated as
described in 4.6.3, Shapes and geometry
(<http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html#4.6.3>).
For instance, a circular crossSection with counter-clockwise
ordering and the default spine form a cylinder. With solid TRUE and
ccw TRUE, the cylinder is visible from the outside. Changing ccw to
FALSE makes it visible from the inside. The ccw, solid, convex, and
creaseAngle fields are described in 4.6.3, Shapes and geometry
(<http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/part1/concepts.html#4.6.3>).
*/
/*!
SoSFBool SoVRMLExtrusion::beginCap
Used to enable/disable begin cap. Default value is TRUE.
*/
/*!
SoSFBool SoVRMLExtrusion::ccw
Specifies counterclockwise vertex ordering. Default value is TRUE.
*/
/*!
SoSFBool SoVRMLExtrusion::convex
Specifies if cross sections is convex. Default value is TRUE.
*/
/*!
SoSFFloat SoVRMLExtrusion::creaseAngle
Specifies the crease angle for the generated normals. Default value is 0.0.
*/
/*!
SoMFVec2f SoVRMLExtrusion::crossSection
The cross section.
*/
/*!
SoSFBool SoVRMLExtrusion::endCap
Used to enable/disable end cap. Default value is TRUE.
*/
/*!
SoMFRotation SoVRMLExtrusion::orientation
Orientation for the cross section at each spine point.
*/
/*!
SoMFVec2f SoVRMLExtrusion::scale
Scaling for the cross section at each spine point.
*/
/*!
SoSFBool SoVRMLExtrusion::solid
When TRUE, backface culling will be enabled. Default value is TRUE.
*/
/*!
SoMFVec3f SoVRMLExtrusion::spine
The spine points.
*/
#include <Inventor/VRMLnodes/SoVRMLExtrusion.h>
#include <float.h>
#include <math.h>
#include <string.h>
#include <Inventor/VRMLnodes/SoVRMLMacros.h>
#include <Inventor/lists/SbList.h>
#include <Inventor/misc/SoNormalGenerator.h>
#include <Inventor/bundles/SoMaterialBundle.h>
#include <Inventor/bundles/SoTextureCoordinateBundle.h>
#include <Inventor/bundles/SoVertexAttributeBundle.h>
#include <Inventor/elements/SoCoordinateElement.h>
#include <Inventor/elements/SoTextureCoordinateElement.h>
#include <Inventor/elements/SoVertexAttributeBindingElement.h>
#include <Inventor/elements/SoGLTextureEnabledElement.h>
#include <Inventor/elements/SoGLCacheContextElement.h>
#include <Inventor/elements/SoShapeHintsElement.h>
#include <Inventor/elements/SoCacheElement.h>
#include <Inventor/SbTesselator.h>
#include <Inventor/actions/SoGLRenderAction.h>
#include <Inventor/actions/SoGetPrimitiveCountAction.h>
#include <Inventor/misc/SoState.h>
#include <Inventor/misc/SoGLDriverDatabase.h>
#include <Inventor/nodes/SoIndexedFaceSet.h>
#include <Inventor/SoPrimitiveVertex.h>
#include <Inventor/errors/SoDebugError.h>
#include <Inventor/elements/SoMultiTextureEnabledElement.h>
#include <Inventor/elements/SoMultiTextureCoordinateElement.h>
#include <Inventor/SbBox2f.h>
#ifdef HAVE_THREADS
#include <Inventor/threads/SbRWMutex.h>
#endif // HAVE_THREADS
#include "nodes/SoSubNodeP.h"
#include "misc/SoVBO.h"
#include "misc/SoVertexArrayIndexer.h"
#include "misc/SoGL.h"
#include "misc/SbHash.h"
#include "caches/SoVBOCache.h"
// *************************************************************************
//
// needed to avoid warnings generated by SbVec3f::normalize
//
static float
my_normalize(SbVec3f & vec)
{
float len = vec.length();
if (len > FLT_EPSILON) {
vec /= len;
}
return len;
}
// set this to TRUE to create triangles, even if convex == TRUE just
// testing this feature. Will consider an environment variable or
// something later. pederb, 2005-01-25
static const SbBool ALWAYS_CREATE_TRIANGLES = FALSE;
class SoVRMLExtrusionVertex {
public:
SbVec3f coord;
SbVec3f normal;
SbVec2f texcoord;
// needed for SbHash
operator unsigned long(void) const {
unsigned long key = 0;
// create an xor key based on coordinates, normal and texcoords
const unsigned char * ptr = (const unsigned char *) this;
const ptrdiff_t size = sizeof(SoVRMLExtrusionVertex);
for (int i = 0; i < size; i++) {
int shift = (i%4) * 8;
key ^= (ptr[i]<<shift);
}
return key;
}
// needed, since if we don't add this the unsigned long operator
// will be used when comparing two vertices.
int operator==(const SoVRMLExtrusionVertex & v) {
return
(this->coord == v.coord) &&
(this->normal == v.normal) &&
(this->texcoord == v.texcoord);
}
};
class SoVRMLExtrusionP {
public:
SoVRMLExtrusionP(SoVRMLExtrusion * master)
:master(master),
coord(32),
tcoord(32),
idx(32),
gen(TRUE),
dirty(TRUE),
vbocache(NULL)
#ifdef COIN_THREADSAFE
, rwmutex(SbRWMutex::READ_PRECEDENCE)
#endif // COIN_THREADSAFE
{
this->tess.setCallback(tess_callback, this);
}
~SoVRMLExtrusionP() {
if (this->vbocache) this->vbocache->unref();
}
SoVRMLExtrusion * master;
SbList <SbVec3f> coord;
SbList <SbVec2f> tcoord;
SbList <int32_t> idx;
SoNormalGenerator gen;
SbTesselator tess;
static void tess_callback(void *, void *, void *, void *);
void generateCoords(void);
void generateNormals(void);
SbBool dirty;
SoVBOCache * vbocache;
SbHash <int32_t, SoVRMLExtrusionVertex> vbohash;
SbList <SbVec3f> vbocoord;
SbList <SbVec3f> vbonormal;
SbList <SbVec2f> vbotexcoord;
void updateVBO(SoAction * action);
void generateVBO(SoAction * action, SoTextureCoordinateBundle & tb);
#ifdef COIN_THREADSAFE
SbRWMutex rwmutex;
void readLock(void) { this->rwmutex.readLock(); }
void readUnlock(void) { this->rwmutex.readUnlock(); }
void writeLock(void) { this->rwmutex.writeLock(); }
void writeUnlock(void) { this->rwmutex.writeUnlock(); }
#else // !COIN_THREADSAFE
void readLock(void) { }
void readUnlock(void) { }
void writeLock(void) { }
void writeUnlock(void) { }
#endif // !COIN_THREADSAFE
};
#define PRIVATE(obj) (obj)->pimpl
#define PUBLIC(obj) obj->master
// *************************************************************************
SO_NODE_SOURCE(SoVRMLExtrusion);
// *************************************************************************
// Doc in parent
void
SoVRMLExtrusion::initClass(void) // static
{
SO_NODE_INTERNAL_INIT_CLASS(SoVRMLExtrusion, SO_VRML97_NODE_TYPE);
}
/*!
Constructor.
*/
SoVRMLExtrusion::SoVRMLExtrusion(void)
{
PRIVATE(this) = new SoVRMLExtrusionP(this);
SO_VRMLNODE_INTERNAL_CONSTRUCTOR(SoVRMLExtrusion);
SO_VRMLNODE_ADD_FIELD(beginCap, (TRUE));
SO_VRMLNODE_ADD_FIELD(endCap, (TRUE));
SO_VRMLNODE_ADD_FIELD(solid, (TRUE));
SO_VRMLNODE_ADD_FIELD(ccw, (TRUE));
SO_VRMLNODE_ADD_FIELD(convex, (TRUE));
SO_VRMLNODE_ADD_FIELD(creaseAngle, (0.0f));
SO_NODE_ADD_FIELD(crossSection, (0.0f, 0.0f));
this->crossSection.setNum(5);
SbVec2f * cs = this->crossSection.startEditing();
cs[0] = SbVec2f(1.0f, 1.0f);
cs[1] = SbVec2f(1.0f, -1.0f);
cs[2] = SbVec2f(-1.0f, -1.0f);
cs[3] = SbVec2f(-1.0f, 1.0f);
cs[4] = SbVec2f(1.0f, 1.0f);
this->crossSection.finishEditing();
this->crossSection.setDefault(TRUE);
SO_NODE_ADD_FIELD(orientation, (SbRotation::identity()));
SO_NODE_ADD_FIELD(scale, (1.0f, 1.0f));
SO_NODE_ADD_FIELD(spine, (0.0f, 0.0f, 0.0f));
this->spine.setNum(2);
this->spine.set1Value(1, 0.0f, 1.0f, 0.0f);
this->spine.setDefault(TRUE);
}
/*!
Destructor.
*/
SoVRMLExtrusion::~SoVRMLExtrusion()
{
delete PRIVATE(this);
}
// Doc in parent
void
SoVRMLExtrusion::GLRender(SoGLRenderAction * action)
{
if (!this->shouldGLRender(action)) return;
SoState * state = action->getState();
state->push();
this->setupShapeHints(state, this->ccw.getValue(), this->solid.getValue());
PRIVATE(this)->readLock();
this->updateCache();
if ((SoTextureCoordinateElement::getType(state) !=
SoTextureCoordinateElement::FUNCTION) &&
(SoTextureCoordinateElement::getType(state) !=
SoTextureCoordinateElement::TEXGEN)) {
SoGLTextureCoordinateElement::setTexGen(state, this, NULL);
SoTextureCoordinateElement::set2(state, this, PRIVATE(this)->tcoord.getLength(),
PRIVATE(this)->tcoord.getArrayPtr());
}
const uint32_t contextid = SoGLCacheContextElement::get(state);
const cc_glglue * glue = cc_glglue_instance(contextid);
SbBool vbo = SoVBO::shouldCreateVBO(state, contextid, PRIVATE(this)->coord.getLength());
if (vbo) PRIVATE(this)->updateVBO(action);
SoMaterialBundle mb(action);
mb.sendFirst();
SbBool doTextures = SoGLTextureEnabledElement::get(state);
if (vbo) {
if (!SoGLDriverDatabase::isSupported(glue, SO_GL_VBO_IN_DISPLAYLIST)) {
SoCacheElement::invalidate(state);
SoGLCacheContextElement::shouldAutoCache(state,
SoGLCacheContextElement::DONT_AUTO_CACHE);
}
int i;
int lastenabled = -1;
const SbBool * enabled = SoMultiTextureEnabledElement::getEnabledUnits(state, lastenabled);
if (doTextures) {
PRIVATE(this)->vbocache->getTexCoordVBO(0)->bindBuffer(contextid);
cc_glglue_glTexCoordPointer(glue, 2, GL_FLOAT, 0, NULL);
cc_glglue_glEnableClientState(glue, GL_TEXTURE_COORD_ARRAY);
for (i = 1; i <= lastenabled; i++) {
if (enabled[i]) {
cc_glglue_glClientActiveTexture(glue, GL_TEXTURE0 + i);
cc_glglue_glTexCoordPointer(glue, 2, GL_FLOAT, 0, NULL);
cc_glglue_glEnableClientState(glue, GL_TEXTURE_COORD_ARRAY);
}
}
cc_glglue_glClientActiveTexture(glue, GL_TEXTURE0);
}
PRIVATE(this)->vbocache->getNormalVBO()->bindBuffer(contextid);
cc_glglue_glNormalPointer(glue, GL_FLOAT, 0, NULL);
cc_glglue_glEnableClientState(glue, GL_NORMAL_ARRAY);
PRIVATE(this)->vbocache->getCoordVBO()->bindBuffer(contextid);
cc_glglue_glVertexPointer(glue, 3, GL_FLOAT, 0, NULL);
cc_glglue_glEnableClientState(glue, GL_VERTEX_ARRAY);
SoGLVertexAttributeElement::getInstance(state)->enableVBO(action);
PRIVATE(this)->vbocache->getVertexArrayIndexer()->render(glue, TRUE, contextid);
cc_glglue_glBindBuffer(glue, GL_ARRAY_BUFFER, 0); // Reset VBO binding
cc_glglue_glDisableClientState(glue, GL_NORMAL_ARRAY);
cc_glglue_glDisableClientState(glue, GL_VERTEX_ARRAY);
SoGLVertexAttributeElement::getInstance(state)->disableVBO(action);
if (doTextures) {
for (i = 1; i <= lastenabled; i++) {
if (enabled[i]) {
cc_glglue_glClientActiveTexture(glue, GL_TEXTURE0 + i);
cc_glglue_glDisableClientState(glue, GL_TEXTURE_COORD_ARRAY);
}
}
cc_glglue_glClientActiveTexture(glue, GL_TEXTURE0);
cc_glglue_glDisableClientState(glue, GL_TEXTURE_COORD_ARRAY);
}
}
else {
const SbVec3f * normals = PRIVATE(this)->gen.getNormals();
SoCoordinateElement::set3(state, this, PRIVATE(this)->coord.getLength(), PRIVATE(this)->coord.getArrayPtr());
const SoCoordinateElement * coords = SoCoordinateElement::getInstance(state);
if (doTextures) {
if (SoTextureCoordinateElement::getType(state) !=
SoTextureCoordinateElement::FUNCTION) {
SoTextureCoordinateElement::set2(state, this, PRIVATE(this)->tcoord.getLength(),
PRIVATE(this)->tcoord.getArrayPtr());
}
int lastenabled = -1;
const SbBool * enabled = SoMultiTextureEnabledElement::getEnabledUnits(state, lastenabled);
if (lastenabled >= 1) {
for (int i = 1; i <= lastenabled; i++) {
if (enabled[i] && (SoMultiTextureCoordinateElement::getType(state, i) !=
SoTextureCoordinateElement::FUNCTION)) {
SoMultiTextureCoordinateElement::set2(state, this, i,
PRIVATE(this)->tcoord.getLength(),
PRIVATE(this)->tcoord.getArrayPtr());
}
}
}
}
SoTextureCoordinateBundle tb(action, TRUE, FALSE);
doTextures = tb.needCoordinates();
SoVertexAttributeBundle vab(action, TRUE);
SbBool doattribs = vab.doAttributes();
SoVertexAttributeBindingElement::Binding attribbind =
SoVertexAttributeBindingElement::get(state);
if (!doattribs) {
// for overall attribute binding we check for doattribs before
// sending anything in SoGL::FaceSet::GLRender
attribbind = SoVertexAttributeBindingElement::OVERALL;
}
sogl_render_faceset((SoGLCoordinateElement *) coords,
PRIVATE(this)->idx.getArrayPtr(),
PRIVATE(this)->idx.getLength(),
normals,
NULL,
&mb,
NULL,
&tb,
PRIVATE(this)->idx.getArrayPtr(),
&vab,
3, /* SoIndexedFaceSet::PER_VERTEX */
0,
(int) attribbind,
doTextures ? 1 : 0,
doattribs ? 1 : 0);
}
PRIVATE(this)->readUnlock();
state->pop();
// send approx number of triangles for autocache handling
sogl_autocache_update(state, PRIVATE(this)->idx.getLength() / 4,
vbo);
}
// Doc in parent
void
SoVRMLExtrusion::getPrimitiveCount(SoGetPrimitiveCountAction * action)
{
PRIVATE(this)->readLock();
this->updateCache();
action->addNumTriangles(PRIVATE(this)->idx.getLength() / 4);
PRIVATE(this)->readUnlock();
}
// Doc in parent
void
SoVRMLExtrusion::computeBBox(SoAction * action,
SbBox3f & box,
SbVec3f & center)
{
PRIVATE(this)->readLock();
this->updateCache();
int num = PRIVATE(this)->coord.getLength();
const SbVec3f * coords = PRIVATE(this)->coord.getArrayPtr();
box.makeEmpty();
while (num--) {
box.extendBy(*coords++);
}
if (!box.isEmpty()) center = box.getCenter();
PRIVATE(this)->readUnlock();
}
// Doc in parent
void
SoVRMLExtrusion::generatePrimitives(SoAction * action)
{
PRIVATE(this)->readLock();
this->updateCache();
const SbVec3f * normals = PRIVATE(this)->gen.getNormals();
const SbVec2f * tcoords = PRIVATE(this)->tcoord.getArrayPtr();
const SbVec3f * coords = PRIVATE(this)->coord.getArrayPtr();
const int32_t * iptr = PRIVATE(this)->idx.getArrayPtr();
const int32_t * endptr = iptr + PRIVATE(this)->idx.getLength();
SoState * state = action->getState();
state->push();
if (SoTextureCoordinateElement::getType(state) !=
SoTextureCoordinateElement::FUNCTION) {
SoTextureCoordinateElement::set2(state, this, PRIVATE(this)->tcoord.getLength(),
PRIVATE(this)->tcoord.getArrayPtr());
}
if (action->isOfType(SoGLRenderAction::getClassTypeId())) {
int lastenabled = -1;
const SbBool * enabled = SoMultiTextureEnabledElement::getEnabledUnits(state, lastenabled);
if (lastenabled >= 1) {
for (int i = 1; i <= lastenabled; i++) {
if (enabled[i] && (SoMultiTextureCoordinateElement::getType(state, i) !=
SoTextureCoordinateElement::FUNCTION)) {
SoMultiTextureCoordinateElement::set2(state, this, i,
PRIVATE(this)->tcoord.getLength(),
PRIVATE(this)->tcoord.getArrayPtr());
}
}
}
}
SoShapeHintsElement::set(state, this,
this->ccw.getValue() ?
SoShapeHintsElement::COUNTERCLOCKWISE :
SoShapeHintsElement::CLOCKWISE,
this->solid.getValue() ?
SoShapeHintsElement::SOLID :
SoShapeHintsElement::UNKNOWN_SHAPE_TYPE,
this->convex.getValue() ?
SoShapeHintsElement::CONVEX :
SoShapeHintsElement::UNKNOWN_FACE_TYPE);
SoTextureCoordinateBundle tb(action, FALSE, FALSE);
SbBool istexfunc = tb.isFunction();
SoPrimitiveVertex vertex;
this->beginShape(action, TRIANGLES);
TriangleShape shapetype = LINES; // set it to some impossible value
int idx;
while (iptr < endptr) {
// we generate either triangles or quads, so this test is safe
SbBool isquad = iptr[3] >= 0;
if (isquad && (shapetype != QUADS)) {
if (shapetype == TRIANGLES) this->endShape();
this->beginShape(action, QUADS);
shapetype = QUADS;
}
if (!isquad && (shapetype != TRIANGLES)) {
if (shapetype == QUADS) this->endShape();
this->beginShape(action, TRIANGLES);
shapetype = TRIANGLES;
}
idx = *iptr++;
while (idx >= 0) {
vertex.setNormal(*normals);
vertex.setPoint(coords[idx]);
if (istexfunc) {
vertex.setTextureCoords(tb.get(coords[idx], *normals));
}
else {
vertex.setTextureCoords(tcoords[idx]);
}
this->shapeVertex(&vertex);
idx = *iptr++;
normals++;
}
}
if ((shapetype == TRIANGLES) || (shapetype == QUADS)) this->endShape();
state->pop();
PRIVATE(this)->readUnlock();
}
// private method that updates the coordinate and normal cache.
// cache must be read-locked when entering here!
void
SoVRMLExtrusion::updateCache(void)
{
if (PRIVATE(this)->dirty) {
PRIVATE(this)->readUnlock();
PRIVATE(this)->writeLock();
PRIVATE(this)->generateCoords();
PRIVATE(this)->generateNormals();
PRIVATE(this)->dirty = FALSE;
PRIVATE(this)->writeUnlock();
PRIVATE(this)->readLock();
}
}
void
SoVRMLExtrusionP::updateVBO(SoAction * action)
{
if (this->vbocache == NULL || !this->vbocache->isValid(action->getState())) {
this->readUnlock();
SoTextureCoordinateBundle tb(action, FALSE, FALSE);
SbBool istexfunc = tb.isFunction();
if (istexfunc) {
// trigger a texture coordinate function callback to update (for
// instance) bounding box caches in texture function nodes. It's
// important that this is done before we writeLock() the node.
(void) tb.get(SbVec3f(0.0f, 0.0f, 0.0f), SbVec3f(0.0f, 0.0f, 1.0f));
}
this->writeLock();
this->generateVBO(action, tb);
this->writeUnlock();
this->readLock();
}
}
void
SoVRMLExtrusionP::generateVBO(SoAction * action, SoTextureCoordinateBundle & tb)
{
SbBool storedinvalid = SoCacheElement::setInvalid(FALSE);
SoState * state = action->getState();
state->push();
if (this->vbocache) {
this->vbocache->unref();
}
this->vbocache = new SoVBOCache(state);
this->vbocache->ref();
// set active cache to record cache dependencies
SoCacheElement::set(state, this->vbocache);
// create a dependency on the texture coordinate element
(void) SoTextureCoordinateElement::getType(state);
SbBool istexfunc = tb.isFunction();
const SbVec3f * normals = this->gen.getNormals();
const SbVec2f * tcoords = this->tcoord.getArrayPtr();
const SbVec3f * coords = this->coord.getArrayPtr();
const int32_t * iptr = this->idx.getArrayPtr();
const int32_t * endptr = iptr + this->idx.getLength();
this->vbohash.clear();
this->vbocoord.truncate(0);
this->vbonormal.truncate(0);
this->vbotexcoord.truncate(0);
SoVRMLExtrusionVertex v;
int32_t vidx[4];
int curridx = 0;
SoVertexArrayIndexer * vboindexer = this->vbocache->getVertexArrayIndexer(TRUE);
while (iptr < endptr) {
// we generate either triangles or quads, so this test is safe
SbBool isquad = iptr[3] >= 0;
for (int i = 0; i < (isquad ? 4 : 3); i++) {
int idx = *iptr++;
v.normal = *normals;
if (istexfunc) {
SbVec4f tmp = tb.get(coords[idx], *normals);
v.texcoord = SbVec2f(tmp[0]/tmp[3], tmp[1]/tmp[3]);
}
else {
v.texcoord = tcoords[idx];
}
v.coord = coords[idx];
normals++;
if (!this->vbohash.get(v, vidx[i])) {
vidx[i] = curridx++;
this->vbohash.put(v, vidx[i]);
this->vbocoord.append(v.coord);
this->vbonormal.append(v.normal);
this->vbotexcoord.append(v.texcoord);
}
}
iptr++;
if (isquad) {
vboindexer->addQuad(vidx[0], vidx[1], vidx[2], vidx[3]);
}
else {
vboindexer->addTriangle(vidx[0], vidx[1], vidx[2]);
}
}
state->pop();
SoCacheElement::setInvalid(storedinvalid);
this->vbohash.clear();
vboindexer->close();
this->vbocache->getCoordVBO()->setBufferData(this->vbocoord.getArrayPtr(),
this->vbocoord.getLength()*sizeof(SbVec3f), 1);
this->vbocache->getNormalVBO()->setBufferData(this->vbonormal.getArrayPtr(),
this->vbonormal.getLength()*sizeof(SbVec3f), 1);
this->vbocache->getTexCoordVBO(0)->setBufferData(this->vbotexcoord.getArrayPtr(),
this->vbotexcoord.getLength()*sizeof(SbVec2f), 1);
}
// Doc in parent
void
SoVRMLExtrusion::notify(SoNotList * list)
{
if (PRIVATE(this)->vbocache) PRIVATE(this)->vbocache->invalidate();
PRIVATE(this)->dirty = TRUE;
inherited::notify(list);
}
// Doc in parent
SoDetail *
SoVRMLExtrusion::createTriangleDetail(SoRayPickAction * action,
const SoPrimitiveVertex * v1,
const SoPrimitiveVertex * v2,
const SoPrimitiveVertex * v3,
SoPickedPoint * pp)
{
// no triangle detail for Extrusion
return NULL;
}
static SbVec3f
calculate_y_axis(const SbVec3f * spine, const int i,
const int numspine, const SbBool closed)
{
SbVec3f Y;
if (closed) {
if (i > 0) {
if (i == numspine-1) {
Y = spine[1] - spine[i-1];
}
else {
Y = spine[i+1] - spine[i-1];
}
}
else {
// use numspine-2, since for closed spines, the last spine point == the first point
Y = spine[1] - spine[numspine >= 2 ? numspine-2 : numspine-1];
}
}
else {
if (i == 0) Y = spine[1] - spine[0];
else if (i == numspine-1) Y = spine[numspine-1] - spine[numspine-2];
else Y = spine[i+1] - spine[i-1];
}
my_normalize(Y);
return Y;
}
static SbVec3f
calculate_z_axis(const SbVec3f * spine, const int i,
const int numspine, const SbBool closed)
{
SbVec3f z0, z1;
if (closed) {
if (i > 0) {
if (i == numspine-1) {
z0 = spine[1] - spine[i];
z1 = spine[i-1] - spine[i];
}
else {
z0 = spine[i+1] - spine[i];
z1 = spine[i-1] - spine[i];
}
}
else {
z0 = spine[1] - spine[0];
z1 = spine[numspine >= 2 ? numspine-2 : numspine-1] - spine[0];
}
}
else {
if (numspine == 2) return SbVec3f(0.0f, 0.0f, 0.0f);
else if (i == 0) {
z0 = spine[2] - spine[1];
z1 = spine[0] - spine[1];
}
else if (i == numspine-1) {
z0 = spine[numspine-1] - spine[numspine-2];
z1 = spine[numspine-3] - spine[numspine-2];
}
else {
z0 = spine[i+1] - spine[i];
z1 = spine[i-1] - spine[i];
}
}
my_normalize(z0);
my_normalize(z1);
// test if spine segments are collinear. If they are, the cross
// product will not be reliable, and we should just use the previous
// Z-axis instead.
if (SbAbs(z0.dot(z1)) > 0.999f) {
return SbVec3f(0.0f, 0.0f, 0.0f);
}
SbVec3f tmp = z0.cross(z1);
if (my_normalize(tmp) == 0.0f) {
return SbVec3f(0.0f, 0.0f, 0.0f);
}
return tmp;
}
//
// generates extruded coordinates
//
void
SoVRMLExtrusionP::generateCoords(void)
{
this->coord.truncate(0);
this->tcoord.truncate(0);
this->idx.truncate(0);
if (PUBLIC(this)->crossSection.getNum() == 0 ||
PUBLIC(this)->spine.getNum() == 0) return;
SbMatrix matrix = SbMatrix::identity();
SbBox2f crossbox;
crossbox.makeEmpty();
int i, j, numcross;
SbBool connected = FALSE; // is cross section closed
SbBool closed = FALSE; // is spine closed
numcross = PUBLIC(this)->crossSection.getNum();
const SbVec2f * cross = PUBLIC(this)->crossSection.getValues(0);
if (cross[0] == cross[numcross-1]) {
connected = TRUE;
}
int numspine = PUBLIC(this)->spine.getNum();
const SbVec3f * spine = PUBLIC(this)->spine.getValues(0);
if (spine[0] == spine[numspine-1]) {
closed = TRUE;
}
// calculate the length of the spine and cross section. Needed for
// texture coordinates.
float spinelen = 0.0f;
float crosslen = 0.0f;
for (i = 0; i < numspine-1; i++) {
spinelen += (spine[i+1]-spine[i]).length();
}
if (spinelen == 0.0f) spinelen = 1.0f;
for (i = 0; i < numcross-1; i++) {
crosslen += (cross[i+1]-cross[i]).length();
}
if (crosslen == 0.0f) crosslen = 1.0f;
SbVec3f prevY(0.0f, 0.0f, 0.0f);
SbVec3f prevZ(0.0f, 0.0f, 0.0f);
const SbVec3f empty(0.0f, 0.0f, 0.0f);
SbBool colinear = FALSE;
SbVec3f X, Y, Z;
// find first non-collinear spine segments and calculate the first
// valid Y and Z axis
for (i = 0; i < numspine && (prevY == empty || prevZ == empty); i++) {
if (prevY == empty) {
Y = calculate_y_axis(spine, i, numspine, closed);
if (Y != empty) prevY = Y;
}
if (prevZ == empty) {
Z = calculate_z_axis(spine, i, numspine, closed);
if (Z != empty) prevZ = Z;
}
}
if (prevY == empty) prevY = SbVec3f(0.0f, 1.0f, 0.0f);
if (prevZ == empty) { // all spine segments are colinear, calculate constant Z axis
prevZ = SbVec3f(0.0f, 0.0f, 1.0f);
if (prevY != SbVec3f(0.0f, 1.0f, 0.0f)) {
SbRotation rot(SbVec3f(0.0f, 1.0f, 0.0f), prevY);
rot.multVec(prevZ, prevZ);
}
colinear = TRUE;
}
int numorient = PUBLIC(this)->orientation.getNum();
const SbRotation * orient = PUBLIC(this)->orientation.getValues(0);
int numscale = PUBLIC(this)->scale.getNum();
const SbVec2f * scale = PUBLIC(this)->scale.getValues(0);
// calculate cross section bbox
for (j = 0; j < numcross; j++) {
crossbox.extendBy(cross[j]);
}
float currentspinelen = 0.0f; // for texcoords
// loop through all spines
for (i = 0; i < numspine; i++) {
if (colinear) {
Y = prevY;
Z = prevZ;
}
else {
Y = calculate_y_axis(spine, i, numspine, closed);
Z = calculate_z_axis(spine, i, numspine, closed);
if (Y == empty) Y = prevY;
if (Z == empty) Z = prevZ;
if (Z.dot(prevZ) < 0) Z = -Z;
}
X = Y.cross(Z);
my_normalize(X);
prevY = Y;
prevZ = Z;
matrix[0][0] = X[0];
matrix[0][1] = X[1];
matrix[0][2] = X[2];
matrix[0][3] = 0.0f;
matrix[1][0] = Y[0];
matrix[1][1] = Y[1];
matrix[1][2] = Y[2];
matrix[1][3] = 0.0f;
matrix[2][0] = Z[0];
matrix[2][1] = Z[1];
matrix[2][2] = Z[2];
matrix[2][3] = 0.0f;
matrix[3][0] = spine[i][0];
matrix[3][1] = spine[i][1];
matrix[3][2] = spine[i][2];
matrix[3][3] = 1.0f;
if (numorient) {
SbMatrix rmat;
orient[SbMin(i, numorient-1)].getValue(rmat);
matrix.multLeft(rmat);
}
if (numscale) {
SbMatrix smat = SbMatrix::identity();
SbVec2f s = scale[SbMin(i, numscale-1)];
smat[0][0] = s[0];
smat[2][2] = s[1];
matrix.multLeft(smat);
}
float currentcrosslen = 0.0f; // for texcoords
for (j = 0; j < numcross; j++) {
SbVec3f c;
SbVec2f tc;
c[0] = cross[j][0];
c[1] = 0.0f;
c[2] = cross[j][1];
matrix.multVecMatrix(c, c);
this->coord.append(c);
tc[0] = currentcrosslen / crosslen;
tc[1] = currentspinelen / spinelen;
this->tcoord.append(tc);
if (j < numcross-1) {
currentcrosslen += (cross[j+1]-cross[j]).length();
}
}
if (i < numspine-1) {
currentspinelen += (spine[i+1]-spine[i]).length();
}
}
#define ADD_POINT(i0, j0) \
do { \
this->idx.append((i0)*numcross+(j0)); \
} while (0)
// this macro makes the code below more readable
#define ADD_TRIANGLE(i0, j0, i1, j1, i2, j2) \
do { \
this->idx.append((i0)*numcross+(j0)); \
this->idx.append((i2)*numcross+(j2)); \
this->idx.append((i1)*numcross+(j1)); \
this->idx.append(-1); \
} while (0)
#define ADD_QUAD(i0, j0, i1, j1, i2, j2, i3, j3) \
do { \
this->idx.append((i0)*numcross+(j0)); \
this->idx.append((i3)*numcross+(j3)); \
this->idx.append((i2)*numcross+(j2)); \
this->idx.append((i1)*numcross+(j1)); \
this->idx.append(-1); \
} while (0)
// create walls
for (i = 0; i < numspine-1; i++) {
for (j = 0; j < numcross-1; j++) {
if (PUBLIC(this)->convex.getValue() && !ALWAYS_CREATE_TRIANGLES) {
ADD_QUAD(i, j, i+1, j, i+1, j+1, i, j+1);
}
else {
ADD_TRIANGLE(i, j, i+1, j, i+1, j+1);
ADD_TRIANGLE(i, j, i+1, j+1, i, j+1);
}
}
}
SbVec2f crossboxsize = crossbox.getMax() - crossbox.getMin();
// create beginCap polygon
if (PUBLIC(this)->beginCap.getValue() && !closed) {
// create texcoords
for (i = 0; i < numcross; i++) {
SbVec2f c = cross[i];
c -= crossbox.getMin();
c[0] /= crossboxsize[0];
c[1] /= crossboxsize[1];
this->tcoord.append(c);
}
// just duplicated begincap coords to simplify texture coordinate handling
for (i = 0; i < numcross; i++) {
this->coord.append(coord[i]);
}
if (PUBLIC(this)->convex.getValue()) {
for (i = 1; i < (connected ? numcross-2 : numcross-1); i++) {
ADD_TRIANGLE(numspine, 0, numspine, i, numspine, i+1);
}
}
else {
// let the tesselator create triangles
this->tess.beginPolygon(FALSE);
for (i = (connected ? numcross-2 : numcross-1); i >= 0; i--) {
int theidx = numcross*numspine + i;
SbVec3f tc;
tc.setValue(cross[i][0],
cross[i][1],
0.0f);
this->tess.addVertex(tc, (void*) ((uintptr_t) theidx));
}
this->tess.endPolygon();
}
}
// create endCap polygon
if (PUBLIC(this)->endCap.getValue() && !closed) {
// just duplicate endcap coords to simplify texture coordinate handling
for (i = 0; i < numcross; i++) {
this->coord.append(coord[(numspine-1)*numcross+i]);
}
// create texcoords
for (i = 0; i < numcross; i++) {
SbVec2f c = cross[i];
c -= crossbox.getMin();
c[0] /= crossboxsize[0];
c[1] /= crossboxsize[1];
// the endCap texcoords should be flipped in the T dimension
c[1] = 1.0f - c[1];
this->tcoord.append(c);
}
if (PUBLIC(this)->convex.getValue()) {
for (i = 1; i < (connected ? numcross-2 : numcross-1); i++) {
ADD_TRIANGLE(numspine+1, numcross-1,
numspine+1, numcross-1-i,
numspine+1, numcross-2-i);
}
}
else {
// let the tesselator create triangles
this->tess.beginPolygon(FALSE);
for (i = (connected ? numcross-2 : numcross-1); i >= 0; i--) {
int theidx = (numspine+1)*numcross + numcross - 1 - i;
SbVec3f tc;
tc.setValue(cross[(numcross-1)-i][0],
cross[(numcross-1)-i][1],
0.0f);
this->tess.addVertex(tc, (void*) ((uintptr_t) theidx));
}
this->tess.endPolygon();
}
}
#undef ADD_TRIANGLE
#undef ADD_QUAD
#undef ADD_POINT
}
//
// generates per-verex normals for the extrusion.
//
void
SoVRMLExtrusionP::generateNormals(void)
{
this->gen.reset(PUBLIC(this)->ccw.getValue());
const SbVec3f * c = this->coord.getArrayPtr();
const int32_t * iptr = this->idx.getArrayPtr();
const int32_t * endptr = iptr + this->idx.getLength();
while (iptr < endptr) {
this->gen.beginPolygon();
int32_t theidx = *iptr++;
while (theidx >= 0) {
this->gen.polygonVertex(c[theidx]);
theidx = *iptr++;
}
this->gen.endPolygon();
}
this->gen.generate(PUBLIC(this)->creaseAngle.getValue());
}
//
// callback from the polygon tessellator
//
void
SoVRMLExtrusionP::tess_callback(void * v0, void * v1, void * v2, void * data)
{
SoVRMLExtrusionP * thisp = (SoVRMLExtrusionP*) data;
thisp->idx.append((int32_t)((uintptr_t)v0));
thisp->idx.append((int32_t)((uintptr_t)v1));
thisp->idx.append((int32_t)((uintptr_t)v2));
thisp->idx.append(-1);
}
#undef PUBLIC
#undef PRIVATE
#endif // HAVE_VRML97
|