[go: up one dir, main page]

File: SbVec3f.cpp

package info (click to toggle)
coin3 3.1.3-2.2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 48,368 kB
  • sloc: cpp: 314,329; ansic: 15,927; sh: 13,635; makefile: 8,772; perl: 2,149; lex: 1,302; lisp: 1,247; yacc: 184; xml: 175; sed: 68
file content (585 lines) | stat: -rw-r--r-- 15,632 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
/**************************************************************************\
 *
 *  This file is part of the Coin 3D visualization library.
 *  Copyright (C) by Kongsberg Oil & Gas Technologies.
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  ("GPL") version 2 as published by the Free Software Foundation.
 *  See the file LICENSE.GPL at the root directory of this source
 *  distribution for additional information about the GNU GPL.
 *
 *  For using Coin with software that can not be combined with the GNU
 *  GPL, and for taking advantage of the additional benefits of our
 *  support services, please contact Kongsberg Oil & Gas Technologies
 *  about acquiring a Coin Professional Edition License.
 *
 *  See http://www.coin3d.org/ for more information.
 *
 *  Kongsberg Oil & Gas Technologies, Bygdoy Alle 5, 0257 Oslo, NORWAY.
 *  http://www.sim.no/  sales@sim.no  coin-support@coin3d.org
 *
\**************************************************************************/

/*!
  \class SbVec3f SbLinear.h Inventor/SbLinear.h
  \brief The SbVec3f class is a 3 dimensional vector with floating point coordinates.
  \ingroup base

  This vector class is used by many other classes in
  Coin. It provides storage for a 3 dimensional vector
  aswell as simple floating point arithmetic operations.

  \sa SbVec2s, SbVec2f, SbVec2d, SbVec3s, SbVec3d, SbVec4f, SbVec4d.
*/

#include <Inventor/SbVec3f.h>

#include <limits>
#include <cassert>

#include <Inventor/SbVec3d.h>
#include <Inventor/SbVec3b.h>
#include <Inventor/SbVec3s.h>
#include <Inventor/SbVec3i32.h>

#include <Inventor/SbPlane.h>
#if COIN_DEBUG
#include <Inventor/errors/SoDebugError.h>
#endif // COIN_DEBUG

#include "tidbitsp.h" // coin_debug_normalize()

/*!
  \fn SbVec3f::SbVec3f(void)

  The default constructor does nothing. The vector coordinates will be
  uninitialized until you do a setValue() call.
*/

/*!
  \fn SbVec3f::SbVec3f(const float v[3])

  Constructs an SbVec3f instance with initial values from \a v.
*/

/*!
  \fn SbVec3f::SbVec3f(float x, float y, float z)

  Constructs an SbVec3f instance with the initial vector endpoint set to
  \a <x,y,z>.
*/

/*!
  \fn SbVec3f::SbVec3f(const SbVec3d & v)
  Constructs an SbVec3f instance from an SbVec3d instance.
*/

/*!
  \fn SbVec3f::SbVec3f(const SbVec3b & v)
  Constructs an SbVec3f instance from an SbVec3b instance.

  \since Coin 2.5
*/

/*!
  \fn SbVec3f::SbVec3f(const SbVec3s & v)
  Constructs an SbVec3f instance from an SbVec3s instance.

  \since Coin 2.5
*/

/*!
  \fn SbVec3f::SbVec3f(const SbVec3i32 & v)
  Constructs an SbVec3f instance from an SbVec3i32 instance.

  \since Coin 2.5
*/

/*!
  Constructs an SbVec3f instance by combining the three given planes.
  None of the planes should be parallel to any of the other two, otherwise
  a divide by zero error will occur.
*/

SbVec3f::SbVec3f(const SbPlane & p0, const SbPlane & p1, const SbPlane & p2)
{
  SbVec3f n0 = p0.getNormal();
  SbVec3f n1 = p1.getNormal();
  SbVec3f n2 = p2.getNormal();

#if COIN_DEBUG
  if (!((fabs(n0.dot(n1)) != 1.0f) &&
       (fabs(n0.dot(n2)) != 1.0f) &&
       (fabs(n1.dot(n2)) != 1.0f)))
    SoDebugError::postWarning("SbVec3f::SbVec3f",
                              "Two or more of the given planes are parallel"
                              " => Can't create intersection point.");
#endif // COIN_DEBUG

  // The equation for a point in a plane can be:
  //
  //                N(P - P0) = 0    , N is the plane's normal vectors,
  //                                    P is the point and P0 is the "root
  //                                    point" of the plane (i.e. the point
  //                                    in the plane closest to the coordinate
  //                                    system origin)
  //
  // Simplifying and substituting, we get this:
  //
  //                NP = d           , d is the distance from the origin to
  //                                    the closest point on the plane
  //
  // Using this for all three given planes:
  //                N0P = d0
  //                N1P = d1
  //                N2P = d2
  //
  // Taking the dot products we get a set of linear equations:
  //
  //   n0x*px + n0y*py + n0z*pz = d0
  //   n1x*px + n1y*py + n1z*pz = d1
  //   n2x*px + n2y*py + n2z*pz = d2   , where [px, py, pz] are the unknowns.
  //
  // This can be solved by applying the Gauss elimination method. See
  // for instance "Advanced Engineering Mathemathics", Kreyszig, 6th edition,
  // chapter 19.
  //                                                        19980817 mortene.


  // a is the input matrix, x is the solution vector, m is a matrix
  // used for temporary storage.
  float a[3][4], x[3], m[3][4];

  a[0][0] = n0[0];
  a[0][1] = n0[1];
  a[0][2] = n0[2];
  a[0][3] = p0.getDistanceFromOrigin();
  a[1][0] = n1[0];
  a[1][1] = n1[1];
  a[1][2] = n1[2];
  a[1][3] = p1.getDistanceFromOrigin();
  a[2][0] = n2[0];
  a[2][1] = n2[1];
  a[2][2] = n2[2];
  a[2][3] = p2.getDistanceFromOrigin();


  int i, j;
  const int n = 3; // Input matrix dimensions are n  (n+1).

  for (int k=0; k < n-1; k++) {
    j=k;

    while (a[j][k] == 0.0f) j++;
    if (j != k) for (i=0; i < n+1; i++) SbSwap(a[j][i], a[k][i]);

    for (j = k+1; j < n; j++) {
      m[j][k] = a[j][k]/a[k][k];

      for (int p=k+1; p < n+1; p++) a[j][p] -= m[j][k]*a[k][p];
    }
  }

  // Back substitution.
  x[n-1] = a[n-1][n]/a[n-1][n-1];
  for (i=n-2; i >= 0; i--) {
    float sum = 0.0f;
    for (j=i+1; j < n; j++) sum += a[i][j]*x[j];

    x[i] = (a[i][n] - sum)/a[i][i];
  }

  this->vec[0] = x[0];
  this->vec[1] = x[1];
  this->vec[2] = x[2];
}

/*!
  Returns the result of taking the cross product of this vector and \a v.
*/
SbVec3f
SbVec3f::cross(const SbVec3f & v) const
{
  return SbVec3f(this->vec[1]*v.vec[2] - this->vec[2]*v.vec[1],
                 this->vec[2]*v.vec[0] - this->vec[0]*v.vec[2],
                 this->vec[0]*v.vec[1] - this->vec[1]*v.vec[0]);
}

/*!
  \fn float SbVec3f::dot(const SbVec3f & v) const

  Calculates and returns the result of taking the dot product of this
  vector and \a v.
*/

/*!  
  Compares the vector with \a v and returns \c TRUE if the distance
  between the vectors is smaller or equal to the square root of
  \a tolerance.
*/
SbBool
SbVec3f::equals(const SbVec3f & v, const float tolerance) const
{
#if COIN_DEBUG
  if (!(tolerance >= 0.0f))
    SoDebugError::postWarning("SbVec3f::equals",
                              "Tolerance should be >= 0.0f");
#endif // COIN_DEBUG

  float xdist = this->vec[0] - v[0];
  float ydist = this->vec[1] - v[1];
  float zdist = this->vec[2] - v[2];

  return ((xdist*xdist + ydist*ydist + zdist*zdist) <= tolerance);
}

/*!
  Return the vector representing the principal axis closest to this
  vector.
*/
SbVec3f
SbVec3f::getClosestAxis(void) const
{
  SbVec3f closest(0.0f, 0.0f, 0.0f);
  float xabs = static_cast<float>(fabs(this->vec[0]));
  float yabs = static_cast<float>(fabs(this->vec[1]));
  float zabs = static_cast<float>(fabs(this->vec[2]));

  if (xabs>=yabs && xabs>=zabs) closest[0] = (this->vec[0] > 0.0f) ? 1.0f : -1.0f;
  else if (yabs>=zabs) closest[1] = (this->vec[1] > 0.0f) ? 1.0f : -1.0f;
  else closest[2] = (this->vec[2] > 0.0f) ? 1.0f : -1.0f;

  return closest;
}

/*!
  \fn const float * SbVec3f::getValue(void) const

  Returns a pointer to an array of three floats containing the x, y
  and z coordinates of the vector.

  \sa setValue().
*/

/*!
  \fn void SbVec3f::getValue(float & x, float & y, float & z) const

  Returns the x, y and z coordinates of the vector.

  \sa setValue().
*/

/*!
  Return length of vector.
*/

float
SbVec3f::length(void) const
{
  return static_cast<float>(sqrt(this->sqrLength()));
}

/*!
  \fn float SbVec3f::sqrLength(void) const
  Returns the squared length of the vector.
*/

/*!
  \fn void SbVec3f::negate(void)
  Negate the vector (i.e. point it in the opposite direction).
*/

/*!
  Normalize the vector to unit length. Return value is the original
  length of the vector before normalization.

  If the vector is the null vector, no attempt at normalization will
  be done. If the Coin library was built in a debug version, and
  the COIN_DEBUG_NORMALIZE environment variable is set, this error
  message will then be shown:

  \verbatim
    Coin warning in SbVec3f::normalize(): The length of the vector
    should be > 0.0f to be able to normalize.
  \endverbatim

  We've made it possible for Coin to spit out a warning when an
  attempt at normalizing a null-vector is made, as that seems to
  sometimes be a symptom caused by some graver error somewhere else --
  either an internal error in Coin code, a programming error in
  application code, or an error in an input file (like for instance
  invalid polygon specifications).

  If you run into bugs/problems with your application or with Coin, it could be a
  good idea to set COIN_DEBUG_NORMALIZE=1, and then restart the
  application to see if you get any warnings from normalize().

  If this happens, you should run the application in a debugger and see
  how the call-stack backtrace looks when it hits. An easy way of
  getting a debugger break at the warning spot is to set the following
  debugging environment variable which will make the code assert:

  \verbatim
    COIN_DEBUG_BREAK="SbVec3f::normalize"
  \endverbatim

  If you from the backtrace analysis strongly suspects an internal Coin
  bug, please report the call-stack to us at \e coin-support@coin3d.org
  and we'll look into it. Example code that triggers the bug would
  then also be very helpful.

  A note for developers porting code from SGI or TGS Inventor to Coin:
  those Inventor implementations are more slack about detecting and
  giving out warning messages upon API misuses, and you may suddenly
  have gotten this warning with Coin without seeing any indication of
  an error with SGI/TGS Inventor. This does \e not necessarily mean
  that it is a bug in Coin -- it is much more likely that you are
  getting a warning as an indication of API misuse or import file
  errors which were just not detected and/or reported with those
  Inventor implementations.
*/

float
SbVec3f::normalize(void)
{
  float len = this->length();

  if (len > 0.0f) {
    operator/=(len);
  }
#if COIN_DEBUG
  else if (coin_debug_normalize()) {
    SoDebugError::postWarning("SbVec3f::normalize",
                              "The length of the vector should be > 0.0f "
                              "to be able to normalize.");
  }
#endif // COIN_DEBUG

  return len;
}

/*!
  \fn SbVec3f & SbVec3f::setValue(const float v[3])

  Set new coordinates for the vector from \a v. Returns reference to
  self.

  \sa getValue().
*/

/*!
  \fn SbVec3f & SbVec3f::setValue(float x, float y, float z)

  Set new coordinates for the vector. Returns reference to self.

  \sa getValue().
*/


/*!
  Set this vector to be the average of \a v0, \a v1 and \a v2.
  The vector components are weighted by the \a barycentric vector.

  \sa getValue().
*/
SbVec3f &
SbVec3f::setValue(const SbVec3f & barycentric,
                  const SbVec3f & v0, const SbVec3f & v1, const SbVec3f & v2)
{
  this->vec[0] = barycentric[0]*v0[0]+barycentric[1]*v1[0]+barycentric[2]*v2[0];
  this->vec[1] = barycentric[0]*v0[1]+barycentric[1]*v1[1]+barycentric[2]*v2[1];
  this->vec[2] = barycentric[0]*v0[2]+barycentric[1]*v1[2]+barycentric[2]*v2[2];
  return *this;
}

/*!
  Sets this vector to the double precision vector \a v, converting the
  vector to a single precision vector.

  This is a Coin extension.

  \since Coin 2.0
*/
SbVec3f & 
SbVec3f::setValue(const SbVec3d & v)
{
#if COIN_DEBUG
  if (v[0] > std::numeric_limits<float>::max() || v[0] < -std::numeric_limits<float>::max() ||
      v[1] > std::numeric_limits<float>::max() || v[1] < -std::numeric_limits<float>::max() ||
      v[2] > std::numeric_limits<float>::max() || v[2] < -std::numeric_limits<float>::max()) {
    SoDebugError::postWarning("SbVec3f::setValue",
                              "The double precision vector will not fit into a "
                              "single precision vector.");
  }
#endif // COIN_DEBUG

  vec[0] = static_cast<float>(v[0]);
  vec[1] = static_cast<float>(v[1]);
  vec[2] = static_cast<float>(v[2]);
  return *this;
}

/*!
  \since Coin 2.5
  \sa getValue()
*/

SbVec3f & 
SbVec3f::setValue(const SbVec3b & v)
{
  vec[0] = static_cast<float>(v[0]);
  vec[1] = static_cast<float>(v[1]);
  vec[2] = static_cast<float>(v[2]);
  return *this;
}

/*!
  \since Coin 2.5
  \sa getValue()
*/

SbVec3f & 
SbVec3f::setValue(const SbVec3s & v)
{
  vec[0] = static_cast<float>(v[0]);
  vec[1] = static_cast<float>(v[1]);
  vec[2] = static_cast<float>(v[2]);
  return *this;
}

/*!
  \since Coin 2.5
  \sa getValue()
*/

SbVec3f & 
SbVec3f::setValue(const SbVec3i32 & v)
{
  vec[0] = static_cast<float>(v[0]);
  vec[1] = static_cast<float>(v[1]);
  vec[2] = static_cast<float>(v[2]);
  return *this;
}

/*!
  \fn float & SbVec3f::operator[] (int i)

  Index operator. Returns modifiable x, y or z coordinate of vector.

  \sa getValue() and setValue().
*/

/*!
  \fn float SbVec3f::operator[] (int i) const
  Index operator. Returns x, y or z coordinate of vector.

  \sa getValue() and setValue().
*/

/*!
  \fn SbVec3f & SbVec3f::operator *= (float d)

  Multiply components of vector with scalar value \a d. Returns
  reference to self.
*/


/*!
  \fn SbVec3f & SbVec3f::operator /= (float d)

  Divides components of vector with scalar value \a d. Returns
  reference to self.
*/

/*!
  \fn SbVec3f & SbVec3f::operator += (const SbVec3f & u)

  Adds this vector and vector \a u. Returns reference to self.
*/


/*!
  \fn SbVec3f & SbVec3f::operator -= (const SbVec3f & u)

  Subtracts vector \a u from this vector. Returns reference to self.
*/

/*!
  \fn SbVec3f SbVec3f::operator - (void) const

  Non-destructive negation operator. Returns a new SbVec3f instance
  which points in the opposite direction of this vector.

  \sa negate().
*/

/*!
  \fn SbVec3f operator * (const SbVec3f & v, float d)
  \relates SbVec3f

  Returns an SbVec3f instance which is the components of vector \a v
  multiplied with \a d.
*/

/*!
  \fn SbVec3f operator * (float d, const SbVec3f & v)
  \relates SbVec3f

  Returns an SbVec3f instance which is the components of vector \a v
  multiplied with \a d.
*/

/*!
  \fn SbVec3f operator / (const SbVec3f & v, float d)
  \relates SbVec3f

  Returns an SbVec3f instance which is the components of vector \a v
  divided on the scalar factor \a d.
*/

/*!
  \fn SbVec3f operator + (const SbVec3f & v1, const SbVec3f & v2)
  \relates SbVec3f

  Returns an SbVec3f instance which is the sum of vectors \a v1 and \a v2.
*/

/*!
  \fn SbVec3f operator - (const SbVec3f & v1, const SbVec3f & v2)
  \relates SbVec3f

  Returns an SbVec3f instance which is vector \a v2 subtracted from
  vector \a v1.
*/

/*!
  \fn int operator == (const SbVec3f & v1, const SbVec3f & v2)
  \relates SbVec3f

  Returns \a 1 if \a v1 and \a v2 are \e exactly equal, \a 0 otherwise.

  \sa equals().
*/

/*!
  \fn int operator != (const SbVec3f & v1, const SbVec3f & v2)
  \relates SbVec3f

  Returns \a 1 if \a v1 and \a v2 are not equal, \a 0 if they are equal.

  \sa equals().
*/

/*!
  Dump the state of this object to the \a file stream. Only works in
  debug version of library, method does nothing in an optimized
  compile.
*/
void
SbVec3f::print(FILE * fp) const
{
#if COIN_DEBUG
  (void)fprintf(fp, "<%f, %f, %f>", this->vec[0], this->vec[1], this->vec[2]);
#endif // COIN_DEBUG
}