1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
|
/**************************************************************************\
*
* This file is part of the Coin 3D visualization library.
* Copyright (C) by Kongsberg Oil & Gas Technologies.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.GPL at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using Coin with software that can not be combined with the GNU
* GPL, and for taking advantage of the additional benefits of our
* support services, please contact Kongsberg Oil & Gas Technologies
* about acquiring a Coin Professional Edition License.
*
* See http://www.coin3d.org/ for more information.
*
* Kongsberg Oil & Gas Technologies, Bygdoy Alle 5, 0257 Oslo, NORWAY.
* http://www.sim.no/ sales@sim.no coin-support@coin3d.org
*
\**************************************************************************/
/*!
\class SbVec3f SbLinear.h Inventor/SbLinear.h
\brief The SbVec3f class is a 3 dimensional vector with floating point coordinates.
\ingroup base
This vector class is used by many other classes in
Coin. It provides storage for a 3 dimensional vector
aswell as simple floating point arithmetic operations.
\sa SbVec2s, SbVec2f, SbVec2d, SbVec3s, SbVec3d, SbVec4f, SbVec4d.
*/
#include <Inventor/SbVec3f.h>
#include <limits>
#include <cassert>
#include <Inventor/SbVec3d.h>
#include <Inventor/SbVec3b.h>
#include <Inventor/SbVec3s.h>
#include <Inventor/SbVec3i32.h>
#include <Inventor/SbPlane.h>
#if COIN_DEBUG
#include <Inventor/errors/SoDebugError.h>
#endif // COIN_DEBUG
#include "tidbitsp.h" // coin_debug_normalize()
/*!
\fn SbVec3f::SbVec3f(void)
The default constructor does nothing. The vector coordinates will be
uninitialized until you do a setValue() call.
*/
/*!
\fn SbVec3f::SbVec3f(const float v[3])
Constructs an SbVec3f instance with initial values from \a v.
*/
/*!
\fn SbVec3f::SbVec3f(float x, float y, float z)
Constructs an SbVec3f instance with the initial vector endpoint set to
\a <x,y,z>.
*/
/*!
\fn SbVec3f::SbVec3f(const SbVec3d & v)
Constructs an SbVec3f instance from an SbVec3d instance.
*/
/*!
\fn SbVec3f::SbVec3f(const SbVec3b & v)
Constructs an SbVec3f instance from an SbVec3b instance.
\since Coin 2.5
*/
/*!
\fn SbVec3f::SbVec3f(const SbVec3s & v)
Constructs an SbVec3f instance from an SbVec3s instance.
\since Coin 2.5
*/
/*!
\fn SbVec3f::SbVec3f(const SbVec3i32 & v)
Constructs an SbVec3f instance from an SbVec3i32 instance.
\since Coin 2.5
*/
/*!
Constructs an SbVec3f instance by combining the three given planes.
None of the planes should be parallel to any of the other two, otherwise
a divide by zero error will occur.
*/
SbVec3f::SbVec3f(const SbPlane & p0, const SbPlane & p1, const SbPlane & p2)
{
SbVec3f n0 = p0.getNormal();
SbVec3f n1 = p1.getNormal();
SbVec3f n2 = p2.getNormal();
#if COIN_DEBUG
if (!((fabs(n0.dot(n1)) != 1.0f) &&
(fabs(n0.dot(n2)) != 1.0f) &&
(fabs(n1.dot(n2)) != 1.0f)))
SoDebugError::postWarning("SbVec3f::SbVec3f",
"Two or more of the given planes are parallel"
" => Can't create intersection point.");
#endif // COIN_DEBUG
// The equation for a point in a plane can be:
//
// N(P - P0) = 0 , N is the plane's normal vectors,
// P is the point and P0 is the "root
// point" of the plane (i.e. the point
// in the plane closest to the coordinate
// system origin)
//
// Simplifying and substituting, we get this:
//
// NP = d , d is the distance from the origin to
// the closest point on the plane
//
// Using this for all three given planes:
// N0P = d0
// N1P = d1
// N2P = d2
//
// Taking the dot products we get a set of linear equations:
//
// n0x*px + n0y*py + n0z*pz = d0
// n1x*px + n1y*py + n1z*pz = d1
// n2x*px + n2y*py + n2z*pz = d2 , where [px, py, pz] are the unknowns.
//
// This can be solved by applying the Gauss elimination method. See
// for instance "Advanced Engineering Mathemathics", Kreyszig, 6th edition,
// chapter 19.
// 19980817 mortene.
// a is the input matrix, x is the solution vector, m is a matrix
// used for temporary storage.
float a[3][4], x[3], m[3][4];
a[0][0] = n0[0];
a[0][1] = n0[1];
a[0][2] = n0[2];
a[0][3] = p0.getDistanceFromOrigin();
a[1][0] = n1[0];
a[1][1] = n1[1];
a[1][2] = n1[2];
a[1][3] = p1.getDistanceFromOrigin();
a[2][0] = n2[0];
a[2][1] = n2[1];
a[2][2] = n2[2];
a[2][3] = p2.getDistanceFromOrigin();
int i, j;
const int n = 3; // Input matrix dimensions are n (n+1).
for (int k=0; k < n-1; k++) {
j=k;
while (a[j][k] == 0.0f) j++;
if (j != k) for (i=0; i < n+1; i++) SbSwap(a[j][i], a[k][i]);
for (j = k+1; j < n; j++) {
m[j][k] = a[j][k]/a[k][k];
for (int p=k+1; p < n+1; p++) a[j][p] -= m[j][k]*a[k][p];
}
}
// Back substitution.
x[n-1] = a[n-1][n]/a[n-1][n-1];
for (i=n-2; i >= 0; i--) {
float sum = 0.0f;
for (j=i+1; j < n; j++) sum += a[i][j]*x[j];
x[i] = (a[i][n] - sum)/a[i][i];
}
this->vec[0] = x[0];
this->vec[1] = x[1];
this->vec[2] = x[2];
}
/*!
Returns the result of taking the cross product of this vector and \a v.
*/
SbVec3f
SbVec3f::cross(const SbVec3f & v) const
{
return SbVec3f(this->vec[1]*v.vec[2] - this->vec[2]*v.vec[1],
this->vec[2]*v.vec[0] - this->vec[0]*v.vec[2],
this->vec[0]*v.vec[1] - this->vec[1]*v.vec[0]);
}
/*!
\fn float SbVec3f::dot(const SbVec3f & v) const
Calculates and returns the result of taking the dot product of this
vector and \a v.
*/
/*!
Compares the vector with \a v and returns \c TRUE if the distance
between the vectors is smaller or equal to the square root of
\a tolerance.
*/
SbBool
SbVec3f::equals(const SbVec3f & v, const float tolerance) const
{
#if COIN_DEBUG
if (!(tolerance >= 0.0f))
SoDebugError::postWarning("SbVec3f::equals",
"Tolerance should be >= 0.0f");
#endif // COIN_DEBUG
float xdist = this->vec[0] - v[0];
float ydist = this->vec[1] - v[1];
float zdist = this->vec[2] - v[2];
return ((xdist*xdist + ydist*ydist + zdist*zdist) <= tolerance);
}
/*!
Return the vector representing the principal axis closest to this
vector.
*/
SbVec3f
SbVec3f::getClosestAxis(void) const
{
SbVec3f closest(0.0f, 0.0f, 0.0f);
float xabs = static_cast<float>(fabs(this->vec[0]));
float yabs = static_cast<float>(fabs(this->vec[1]));
float zabs = static_cast<float>(fabs(this->vec[2]));
if (xabs>=yabs && xabs>=zabs) closest[0] = (this->vec[0] > 0.0f) ? 1.0f : -1.0f;
else if (yabs>=zabs) closest[1] = (this->vec[1] > 0.0f) ? 1.0f : -1.0f;
else closest[2] = (this->vec[2] > 0.0f) ? 1.0f : -1.0f;
return closest;
}
/*!
\fn const float * SbVec3f::getValue(void) const
Returns a pointer to an array of three floats containing the x, y
and z coordinates of the vector.
\sa setValue().
*/
/*!
\fn void SbVec3f::getValue(float & x, float & y, float & z) const
Returns the x, y and z coordinates of the vector.
\sa setValue().
*/
/*!
Return length of vector.
*/
float
SbVec3f::length(void) const
{
return static_cast<float>(sqrt(this->sqrLength()));
}
/*!
\fn float SbVec3f::sqrLength(void) const
Returns the squared length of the vector.
*/
/*!
\fn void SbVec3f::negate(void)
Negate the vector (i.e. point it in the opposite direction).
*/
/*!
Normalize the vector to unit length. Return value is the original
length of the vector before normalization.
If the vector is the null vector, no attempt at normalization will
be done. If the Coin library was built in a debug version, and
the COIN_DEBUG_NORMALIZE environment variable is set, this error
message will then be shown:
\verbatim
Coin warning in SbVec3f::normalize(): The length of the vector
should be > 0.0f to be able to normalize.
\endverbatim
We've made it possible for Coin to spit out a warning when an
attempt at normalizing a null-vector is made, as that seems to
sometimes be a symptom caused by some graver error somewhere else --
either an internal error in Coin code, a programming error in
application code, or an error in an input file (like for instance
invalid polygon specifications).
If you run into bugs/problems with your application or with Coin, it could be a
good idea to set COIN_DEBUG_NORMALIZE=1, and then restart the
application to see if you get any warnings from normalize().
If this happens, you should run the application in a debugger and see
how the call-stack backtrace looks when it hits. An easy way of
getting a debugger break at the warning spot is to set the following
debugging environment variable which will make the code assert:
\verbatim
COIN_DEBUG_BREAK="SbVec3f::normalize"
\endverbatim
If you from the backtrace analysis strongly suspects an internal Coin
bug, please report the call-stack to us at \e coin-support@coin3d.org
and we'll look into it. Example code that triggers the bug would
then also be very helpful.
A note for developers porting code from SGI or TGS Inventor to Coin:
those Inventor implementations are more slack about detecting and
giving out warning messages upon API misuses, and you may suddenly
have gotten this warning with Coin without seeing any indication of
an error with SGI/TGS Inventor. This does \e not necessarily mean
that it is a bug in Coin -- it is much more likely that you are
getting a warning as an indication of API misuse or import file
errors which were just not detected and/or reported with those
Inventor implementations.
*/
float
SbVec3f::normalize(void)
{
float len = this->length();
if (len > 0.0f) {
operator/=(len);
}
#if COIN_DEBUG
else if (coin_debug_normalize()) {
SoDebugError::postWarning("SbVec3f::normalize",
"The length of the vector should be > 0.0f "
"to be able to normalize.");
}
#endif // COIN_DEBUG
return len;
}
/*!
\fn SbVec3f & SbVec3f::setValue(const float v[3])
Set new coordinates for the vector from \a v. Returns reference to
self.
\sa getValue().
*/
/*!
\fn SbVec3f & SbVec3f::setValue(float x, float y, float z)
Set new coordinates for the vector. Returns reference to self.
\sa getValue().
*/
/*!
Set this vector to be the average of \a v0, \a v1 and \a v2.
The vector components are weighted by the \a barycentric vector.
\sa getValue().
*/
SbVec3f &
SbVec3f::setValue(const SbVec3f & barycentric,
const SbVec3f & v0, const SbVec3f & v1, const SbVec3f & v2)
{
this->vec[0] = barycentric[0]*v0[0]+barycentric[1]*v1[0]+barycentric[2]*v2[0];
this->vec[1] = barycentric[0]*v0[1]+barycentric[1]*v1[1]+barycentric[2]*v2[1];
this->vec[2] = barycentric[0]*v0[2]+barycentric[1]*v1[2]+barycentric[2]*v2[2];
return *this;
}
/*!
Sets this vector to the double precision vector \a v, converting the
vector to a single precision vector.
This is a Coin extension.
\since Coin 2.0
*/
SbVec3f &
SbVec3f::setValue(const SbVec3d & v)
{
#if COIN_DEBUG
if (v[0] > std::numeric_limits<float>::max() || v[0] < -std::numeric_limits<float>::max() ||
v[1] > std::numeric_limits<float>::max() || v[1] < -std::numeric_limits<float>::max() ||
v[2] > std::numeric_limits<float>::max() || v[2] < -std::numeric_limits<float>::max()) {
SoDebugError::postWarning("SbVec3f::setValue",
"The double precision vector will not fit into a "
"single precision vector.");
}
#endif // COIN_DEBUG
vec[0] = static_cast<float>(v[0]);
vec[1] = static_cast<float>(v[1]);
vec[2] = static_cast<float>(v[2]);
return *this;
}
/*!
\since Coin 2.5
\sa getValue()
*/
SbVec3f &
SbVec3f::setValue(const SbVec3b & v)
{
vec[0] = static_cast<float>(v[0]);
vec[1] = static_cast<float>(v[1]);
vec[2] = static_cast<float>(v[2]);
return *this;
}
/*!
\since Coin 2.5
\sa getValue()
*/
SbVec3f &
SbVec3f::setValue(const SbVec3s & v)
{
vec[0] = static_cast<float>(v[0]);
vec[1] = static_cast<float>(v[1]);
vec[2] = static_cast<float>(v[2]);
return *this;
}
/*!
\since Coin 2.5
\sa getValue()
*/
SbVec3f &
SbVec3f::setValue(const SbVec3i32 & v)
{
vec[0] = static_cast<float>(v[0]);
vec[1] = static_cast<float>(v[1]);
vec[2] = static_cast<float>(v[2]);
return *this;
}
/*!
\fn float & SbVec3f::operator[] (int i)
Index operator. Returns modifiable x, y or z coordinate of vector.
\sa getValue() and setValue().
*/
/*!
\fn float SbVec3f::operator[] (int i) const
Index operator. Returns x, y or z coordinate of vector.
\sa getValue() and setValue().
*/
/*!
\fn SbVec3f & SbVec3f::operator *= (float d)
Multiply components of vector with scalar value \a d. Returns
reference to self.
*/
/*!
\fn SbVec3f & SbVec3f::operator /= (float d)
Divides components of vector with scalar value \a d. Returns
reference to self.
*/
/*!
\fn SbVec3f & SbVec3f::operator += (const SbVec3f & u)
Adds this vector and vector \a u. Returns reference to self.
*/
/*!
\fn SbVec3f & SbVec3f::operator -= (const SbVec3f & u)
Subtracts vector \a u from this vector. Returns reference to self.
*/
/*!
\fn SbVec3f SbVec3f::operator - (void) const
Non-destructive negation operator. Returns a new SbVec3f instance
which points in the opposite direction of this vector.
\sa negate().
*/
/*!
\fn SbVec3f operator * (const SbVec3f & v, float d)
\relates SbVec3f
Returns an SbVec3f instance which is the components of vector \a v
multiplied with \a d.
*/
/*!
\fn SbVec3f operator * (float d, const SbVec3f & v)
\relates SbVec3f
Returns an SbVec3f instance which is the components of vector \a v
multiplied with \a d.
*/
/*!
\fn SbVec3f operator / (const SbVec3f & v, float d)
\relates SbVec3f
Returns an SbVec3f instance which is the components of vector \a v
divided on the scalar factor \a d.
*/
/*!
\fn SbVec3f operator + (const SbVec3f & v1, const SbVec3f & v2)
\relates SbVec3f
Returns an SbVec3f instance which is the sum of vectors \a v1 and \a v2.
*/
/*!
\fn SbVec3f operator - (const SbVec3f & v1, const SbVec3f & v2)
\relates SbVec3f
Returns an SbVec3f instance which is vector \a v2 subtracted from
vector \a v1.
*/
/*!
\fn int operator == (const SbVec3f & v1, const SbVec3f & v2)
\relates SbVec3f
Returns \a 1 if \a v1 and \a v2 are \e exactly equal, \a 0 otherwise.
\sa equals().
*/
/*!
\fn int operator != (const SbVec3f & v1, const SbVec3f & v2)
\relates SbVec3f
Returns \a 1 if \a v1 and \a v2 are not equal, \a 0 if they are equal.
\sa equals().
*/
/*!
Dump the state of this object to the \a file stream. Only works in
debug version of library, method does nothing in an optimized
compile.
*/
void
SbVec3f::print(FILE * fp) const
{
#if COIN_DEBUG
(void)fprintf(fp, "<%f, %f, %f>", this->vec[0], this->vec[1], this->vec[2]);
#endif // COIN_DEBUG
}
|