1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
/**************************************************************************\
*
* This file is part of the Coin 3D visualization library.
* Copyright (C) by Kongsberg Oil & Gas Technologies.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.GPL at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using Coin with software that can not be combined with the GNU
* GPL, and for taking advantage of the additional benefits of our
* support services, please contact Kongsberg Oil & Gas Technologies
* about acquiring a Coin Professional Edition License.
*
* See http://www.coin3d.org/ for more information.
*
* Kongsberg Oil & Gas Technologies, Bygdoy Alle 5, 0257 Oslo, NORWAY.
* http://www.sim.no/ sales@sim.no coin-support@coin3d.org
*
\**************************************************************************/
/*!
\class SoGeoOrigin SoGeoOrigin.h Inventor/nodes/SoGeoOrigin.h
\brief The SoGeoOrigin class is used to specify an absolute geographic location against which geometry is referenced.
\ingroup nodes
<b>FILE FORMAT/DEFAULTS:</b>
\code
GeoOrigin {
geoSystem ["GD", "WE"]
geoCoords 0 0 0
}
\endcode
A common problem when dealing with geographic data is the reduced
floating point precision you often get. UTM coordinates are often in
the 10^5 a 10^6 magnitude, and this leaves very little precision for
details at that position.
The SoGeo nodes are therefore useful when you want to keep your data
in its original system, but still get good floating point precision
when rendering.
Coin needs a local Cartesian coordinate system when rendering. When
a SoGeoOrigin node is used, Coin will create a coordinate system at
the SoGeoOrigin position, and all geometry (and the camera) in the
scene graph will be projected into that coordinate system.
The coordinate system will always have the Z axis point up from the
ground. The Y axis will point towards the north pole, and the X-axis
is found using the right hand rule.
A scene graph should only contain one GeoOrigin node, and all
geometry in the scene graph will, as stated earlier, be rendered
relative to this position. This means that the precision will be
best if the GeoOrigin position is as close to actual camera position
as possible. If you move around on a large area, it might therefore
be a good idea too actually move the GeoOrigin postition instead of
the camera.
To place geometry in the scene graph, you can either use an
SoGeoSeparator node or an SoGeoCoordinate node. When using a
GeoSeparator node, all geometry inside that separator will be
rendered relative to its geo-system position and orientation, and
you then use regular shapes and regular SoCoordinate3 nodes to
specify data (the points in an SoCoordinate3 must be adjusted to be
relative to the GeoSeparator position).
The SoGeoCoordinate node on the other hand can contain double
precision geo-coordinates, and that node will internally recalculate
the double precison array to a single precision array which is
relative to the SoGeoOrgin node.
One note regarding UTM projections: Since it's quite common to assume
a flat earth when working with UTM data, it's possible to supply a
"FLAT" keyword for UTM coordinate systems:
\code
GeoOrigin {
geoSystem [ "UTM", "Z17", "FLAT" ]
geoCoords 846889 4313850 0
}
\endcode
Example scene graph:
\code
GeoOrigin { geoSystem "GD" geoCoords 40.77 -73.97 0 }
GeoSeparator {
# New York, NY
geoSystem "GD"
geoCoords 40.67 -73.94 0
BaseColor { rgb 0 1 0 }
Cube { width 25000 height 25000 depth 25000 }
Translation { translation 0 0 30000 }
Text2 { string "New York" }
}
GeoSeparator {
# Los Angeles, CA
geoSystem "GD"
geoCoords 34.11 -118.4 0
BaseColor { rgb 1 0 0 }
Cube { width 25000 height 25000 depth 25000 }
Translation { translation 0 0 30000 }
Text2 { string "Los Angeles" }
}
GeoSeparator {
# Washington, DC
geoSystem [ "UTM", "Z17" ]
geoCoords 846889 4313850 0
BaseColor { rgb 0 1 1 }
Cube { width 25000 height 25000 depth 25000 }
Translation { translation 0 0 30000 }
Text2 { string "Washington" }
}
# add a small geogrid
GeoCoordinate {
geoSystem "GD"
point [
32 -120 0,
32 -110 0,
32 -100 0,
32 -90 0,
32 -80 0,
32 -70 0,
34 -120 0,
34 -110 0,
34 -100 0,
34 -90 0,
34 -80 0,
34 -70 0,
36 -120 0,
36 -110 0,
36 -100 0,
36 -90 0,
36 -80 0,
36 -70 0,
38 -120 0,
38 -110 0,
38 -100 0,
38 -90 0,
38 -80 0,
38 -70 0,
40 -120 0,
40 -110 0,
40 -100 0,
40 -90 0,
40 -80 0,
40 -70 0
42 -120 0,
42 -110 0,
42 -100 0,
42 -90 0,
42 -80 0,
42 -70 0
]
}
DrawStyle { style LINES }
BaseColor {}
ShapeHints { vertexOrdering COUNTERCLOCKWISE }
QuadMesh { verticesPerRow 6 verticesPerColumn 6 }
\endcode
\since Coin 2.5
*/
// *************************************************************************
#include <Inventor/nodes/SoGeoOrigin.h>
#include <Inventor/actions/SoGLRenderAction.h>
#include <Inventor/actions/SoGetMatrixAction.h>
#include <Inventor/actions/SoGetBoundingBoxAction.h>
#include <Inventor/actions/SoGetPrimitiveCountAction.h>
#include <Inventor/actions/SoAudioRenderAction.h>
#include <Inventor/actions/SoPickAction.h>
#include <Inventor/actions/SoCallbackAction.h>
#include <Inventor/elements/SoModelMatrixElement.h>
#include <Inventor/elements/SoGeoElement.h>
#if COIN_DEBUG
#include <Inventor/errors/SoDebugError.h>
#endif // COIN_DEBUG
#include "nodes/SoSubNodeP.h"
// *************************************************************************
/*!
\var SoSFVec3d SoGeoOrigin::geoCoords
Used for specifying the geographic coordinates. For the GD system this should
be <latitude> <longitude> <elevation>. For UTM it is <easting> <northing> <elevation>,
and for GC it is simply <x> <y> <z>.
*/
/*!
\var SoMFString SoGeoOrigin::geoSystem
Used to specify a spatial reference frame. Coin currently supports three different
systems. Support for more systems might be added in the future.
\li "GD" - The Geodetic system (latitude/longitude).
\li "UTM" - Universal Transverse Mercator coordinate system. The
second string should be the zone, encoded as "Z<n>".
\li "GC" - Earth-fixed Geocentric with respect to the WGS84 ellipsoid.
The "GD" and "UTM" systems can, for future support, have an ellipsoid
specification. The default is "WE" which is the WGS84 ellipsoid, the only
ellipsoid currently supported in Coin.
*/
// *************************************************************************
SO_NODE_SOURCE(SoGeoOrigin);
/*!
Constructor.
*/
SoGeoOrigin::SoGeoOrigin(void)
{
SO_NODE_INTERNAL_CONSTRUCTOR(SoGeoOrigin);
SO_NODE_ADD_FIELD(geoCoords, (0.0, 0.0, 0.0));
SO_NODE_ADD_FIELD(geoSystem, (""));
this->geoSystem.setNum(2);
this->geoSystem.set1Value(0, "GD");
this->geoSystem.set1Value(1, "WE");
this->geoSystem.setDefault(TRUE);
}
/*!
Destructor.
*/
SoGeoOrigin::~SoGeoOrigin()
{
}
// Doc from superclass.
void
SoGeoOrigin::initClass(void)
{
SO_NODE_INTERNAL_INIT_CLASS(SoGeoOrigin, SO_FROM_INVENTOR_1|SoNode::VRML1);
SO_ENABLE(SoGetBoundingBoxAction, SoGeoElement);
SO_ENABLE(SoGLRenderAction, SoGeoElement);
SO_ENABLE(SoGetMatrixAction, SoGeoElement);
SO_ENABLE(SoGetPrimitiveCountAction, SoGeoElement);
SO_ENABLE(SoPickAction, SoGeoElement);
SO_ENABLE(SoCallbackAction, SoGeoElement);
SO_ENABLE(SoGetPrimitiveCountAction, SoGeoElement);
SO_ENABLE(SoAudioRenderAction, SoGeoElement);
}
// Doc from superclass.
void
SoGeoOrigin::doAction(SoAction * action)
{
SoGeoElement::set(action->getState(), this);
}
// Doc from superclass.
void
SoGeoOrigin::GLRender(SoGLRenderAction * action)
{
SoGeoOrigin::doAction((SoAction *)action);
}
// Doc from superclass.
void
SoGeoOrigin::getBoundingBox(SoGetBoundingBoxAction * action)
{
SoGeoOrigin::doAction((SoAction *)action);
}
// Doc from superclass.
void
SoGeoOrigin::getMatrix(SoGetMatrixAction * action)
{
SoGeoOrigin::doAction((SoAction*) action);
}
// Doc from superclass.
void
SoGeoOrigin::callback(SoCallbackAction * action)
{
SoGeoOrigin::doAction((SoAction *)action);
}
// Doc from superclass.
void
SoGeoOrigin::pick(SoPickAction * action)
{
SoGeoOrigin::doAction((SoAction *)action);
}
// Doc from superclass.
void
SoGeoOrigin::getPrimitiveCount(SoGetPrimitiveCountAction * action)
{
SoGeoOrigin::doAction((SoAction *)action);
}
#ifdef COIN_TEST_SUITE
BOOST_AUTO_TEST_CASE(initialized)
{
SoGeoOrigin * node = new SoGeoOrigin;
assert(node);
node->ref();
BOOST_CHECK_MESSAGE(node->getTypeId() != SoType::badType(),
"missing class initialization");
node->unref();
}
#endif // COIN_TEST_SUITE
|