1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/*
Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
Neither the name of the Johns Hopkins University nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
*/
//////////////////////
// Polynomial Roots //
//////////////////////
#include <math.h>
#include "Factor.h"
int Factor(double a1,double a0,double roots[1][2],double EPS){
if(fabs(a1)<=EPS){return 0;}
roots[0][0]=-a0/a1;
roots[0][1]=0;
return 1;
}
int Factor(double a2,double a1,double a0,double roots[2][2],double EPS){
double d;
if(fabs(a2)<=EPS){return Factor(a1,a0,roots,EPS);}
d=a1*a1-4*a0*a2;
a1/=(2*a2);
if(d<0){
d=sqrt(-d)/(2*a2);
roots[0][0]=roots[1][0]=-a1;
roots[0][1]=-d;
roots[1][1]= d;
}
else{
d=sqrt(d)/(2*a2);
roots[0][1]=roots[1][1]=0;
roots[0][0]=-a1-d;
roots[1][0]=-a1+d;
}
return 2;
}
// Solution taken from: http://mathworld.wolfram.com/CubicFormula.html
// and http://www.csit.fsu.edu/~burkardt/f_src/subpak/subpak.f90
int Factor(double a3,double a2,double a1,double a0,double roots[3][2],double EPS){
double q,r,r2,q3;
if(fabs(a3)<=EPS){return Factor(a2,a1,a0,roots,EPS);}
a2/=a3;
a1/=a3;
a0/=a3;
q=-(3*a1-a2*a2)/9;
r=-(9*a2*a1-27*a0-2*a2*a2*a2)/54;
r2=r*r;
q3=q*q*q;
if(r2<q3){
double sqrQ=sqrt(q);
double theta = acos ( r / (sqrQ*q) );
double cTheta=cos(theta/3)*sqrQ;
double sTheta=sin(theta/3)*sqrQ*SQRT_3/2;
roots[0][1]=roots[1][1]=roots[2][1]=0;
roots[0][0]=-2*cTheta;
roots[1][0]=-2*(-cTheta*0.5-sTheta);
roots[2][0]=-2*(-cTheta*0.5+sTheta);
}
else{
double s1,s2,sqr=sqrt(r2-q3);
double t;
t=-r+sqr;
if(t<0){s1=-pow(-t,1.0/3);}
else{s1=pow(t,1.0/3);}
t=-r-sqr;
if(t<0){s2=-pow(-t,1.0/3);}
else{s2=pow(t,1.0/3);}
roots[0][1]=0;
roots[0][0]=s1+s2;
s1/=2;
s2/=2;
roots[1][0]= roots[2][0]=-s1-s2;
roots[1][1]= SQRT_3*(s1-s2);
roots[2][1]=-roots[1][1];
}
roots[0][0]-=a2/3;
roots[1][0]-=a2/3;
roots[2][0]-=a2/3;
return 3;
}
double ArcTan2(double y,double x){
/* This first case should never happen */
if(y==0 && x==0){return 0;}
if(x==0){
if(y>0){return PI/2.0;}
else{return -PI/2.0;}
}
if(x>=0){return atan(y/x);}
else{
if(y>=0){return atan(y/x)+PI;}
else{return atan(y/x)-PI;}
}
}
double Angle(const double in[2]){
if((in[0]*in[0]+in[1]*in[1])==0.0){return 0;}
else{return ArcTan2(in[1],in[0]);}
}
void Sqrt(const double in[2],double out[2]){
double r=sqrt(sqrt(in[0]*in[0]+in[1]*in[1]));
double a=Angle(in)*0.5;
out[0]=r*cos(a);
out[1]=r*sin(a);
}
void Add(const double in1[2],const double in2[2],double out[2]){
out[0]=in1[0]+in2[0];
out[1]=in1[1]+in2[1];
}
void Subtract(const double in1[2],const double in2[2],double out[2]){
out[0]=in1[0]-in2[0];
out[1]=in1[1]-in2[1];
}
void Multiply(const double in1[2],const double in2[2],double out[2]){
out[0]=in1[0]*in2[0]-in1[1]*in2[1];
out[1]=in1[0]*in2[1]+in1[1]*in2[0];
}
void Divide(const double in1[2],const double in2[2],double out[2]){
double temp[2];
double l=in2[0]*in2[0]+in2[1]*in2[1];
temp[0]= in2[0]/l;
temp[1]=-in2[1]/l;
Multiply(in1,temp,out);
}
// Solution taken from: http://mathworld.wolfram.com/QuarticEquation.html
// and http://www.csit.fsu.edu/~burkardt/f_src/subpak/subpak.f90
int Factor(double a4,double a3,double a2,double a1,double a0,double roots[4][2],double EPS){
double R[2],D[2],E[2],R2[2];
if(fabs(a4)<EPS){return Factor(a3,a2,a1,a0,roots,EPS);}
a3/=a4;
a2/=a4;
a1/=a4;
a0/=a4;
Factor(1.0,-a2,a3*a1-4.0*a0,-a3*a3*a0+4.0*a2*a0-a1*a1,roots,EPS);
R2[0]=a3*a3/4.0-a2+roots[0][0];
R2[1]=0;
Sqrt(R2,R);
if(fabs(R[0])>10e-8){
double temp1[2],temp2[2];
double p1[2],p2[2];
p1[0]=a3*a3*0.75-2.0*a2-R2[0];
p1[1]=0;
temp2[0]=((4.0*a3*a2-8.0*a1-a3*a3*a3)/4.0);
temp2[1]=0;
Divide(temp2,R,p2);
Add (p1,p2,temp1);
Subtract(p1,p2,temp2);
Sqrt(temp1,D);
Sqrt(temp2,E);
}
else{
R[0]=R[1]=0;
double temp1[2],temp2[2];
temp1[0]=roots[0][0]*roots[0][0]-4.0*a0;
temp1[1]=0;
Sqrt(temp1,temp2);
temp1[0]=a3*a3*0.75-2.0*a2+2.0*temp2[0];
temp1[1]= 2.0*temp2[1];
Sqrt(temp1,D);
temp1[0]=a3*a3*0.75-2.0*a2-2.0*temp2[0];
temp1[1]= -2.0*temp2[1];
Sqrt(temp1,E);
}
roots[0][0]=-a3/4.0+R[0]/2.0+D[0]/2.0;
roots[0][1]= R[1]/2.0+D[1]/2.0;
roots[1][0]=-a3/4.0+R[0]/2.0-D[0]/2.0;
roots[1][1]= R[1]/2.0-D[1]/2.0;
roots[2][0]=-a3/4.0-R[0]/2.0+E[0]/2.0;
roots[2][1]= -R[1]/2.0+E[1]/2.0;
roots[3][0]=-a3/4.0-R[0]/2.0-E[0]/2.0;
roots[3][1]= -R[1]/2.0-E[1]/2.0;
return 4;
}
int Solve(const double* eqns,const double* values,double* solutions,int dim){
int i,j,eIndex;
double v,m;
int *index=new int[dim];
int *set=new int[dim];
double* myEqns=new double[dim*dim];
double* myValues=new double[dim];
for(i=0;i<dim*dim;i++){myEqns[i]=eqns[i];}
for(i=0;i<dim;i++){
myValues[i]=values[i];
set[i]=0;
}
for(i=0;i<dim;i++){
// Find the largest equation that has a non-zero entry in the i-th index
m=-1;
eIndex=-1;
for(j=0;j<dim;j++){
if(set[j]){continue;}
if(myEqns[j*dim+i]!=0 && fabs(myEqns[j*dim+i])>m){
m=fabs(myEqns[j*dim+i]);
eIndex=j;
}
}
if(eIndex==-1){
delete[] index;
delete[] myValues;
delete[] myEqns;
delete[] set;
return 0;
}
// The position in which the solution for the i-th variable can be found
index[i]=eIndex;
set[eIndex]=1;
// Normalize the equation
v=myEqns[eIndex*dim+i];
for(j=0;j<dim;j++){myEqns[eIndex*dim+j]/=v;}
myValues[eIndex]/=v;
// Subtract it off from everything else
for(j=0;j<dim;j++){
if(j==eIndex){continue;}
double vv=myEqns[j*dim+i];
for(int k=0;k<dim;k++){myEqns[j*dim+k]-=myEqns[eIndex*dim+k]*vv;}
myValues[j]-=myValues[eIndex]*vv;
}
}
for(i=0;i<dim;i++){solutions[i]=myValues[index[i]];}
delete[] index;
delete[] myValues;
delete[] myEqns;
delete[] set;
return 1;
}
|