1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
/*
Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
Neither the name of the Johns Hopkins University nor the names of its contributors
may be used to endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
*/
#ifndef GEOMETRY_INCLUDED
#define GEOMETRY_INCLUDED
#include <math.h>
#include <vector>
#include <stdlib.h>
#include "Hash.h"
template<class Real>
Real Random(void);
template< class Real >
struct Point3D
{
Real coords[3];
Point3D( void ) { coords[0] = coords[1] = coords[2] = Real(0); }
Point3D( Real v ) { coords[0] = coords[1] = coords[2] = v; }
template< class _Real > Point3D( _Real v0 , _Real v1 , _Real v2 ){ coords[0] = Real(v0) , coords[1] = Real(v1) , coords[2] = Real(v2); }
template< class _Real > Point3D( const Point3D< _Real >& p ){ coords[0] = Real( p[0] ) , coords[1] = Real( p[1] ) , coords[2] = Real( p[2] ); }
inline Real& operator[] ( int i ) { return coords[i]; }
inline const Real& operator[] ( int i ) const { return coords[i]; }
inline Point3D operator - ( void ) const { Point3D q ; q.coords[0] = -coords[0] , q.coords[1] = -coords[1] , q.coords[2] = -coords[2] ; return q; }
template< class _Real > inline Point3D& operator += ( Point3D< _Real > p ){ coords[0] += Real(p.coords[0]) , coords[1] += Real(p.coords[1]) , coords[2] += Real(p.coords[2]) ; return *this; }
template< class _Real > inline Point3D operator + ( Point3D< _Real > p ) const { Point3D q ; q.coords[0] = coords[0] + Real(p.coords[0]) , q.coords[1] = coords[1] + Real(p.coords[1]) , q.coords[2] = coords[2] + Real(p.coords[2]) ; return q; }
template< class _Real > inline Point3D& operator *= ( _Real r ) { coords[0] *= Real(r) , coords[1] *= Real(r) , coords[2] *= Real(r) ; return *this; }
template< class _Real > inline Point3D operator * ( _Real r ) const { Point3D q ; q.coords[0] = coords[0] * Real(r) , q.coords[1] = coords[1] * Real(r) , q.coords[2] = coords[2] * Real(r) ; return q; }
template< class _Real > inline Point3D& operator -= ( Point3D< _Real > p ){ return ( (*this)+=(-p) ); }
template< class _Real > inline Point3D operator - ( Point3D< _Real > p ) const { return (*this)+(-p); }
template< class _Real > inline Point3D& operator /= ( _Real r ){ return ( (*this)*=Real(1./r) ); }
template< class _Real > inline Point3D operator / ( _Real r ) const { return (*this) * ( Real(1.)/r ); }
static Real Dot( const Point3D< Real >& p1 , const Point3D< Real >& p2 ){ return p1.coords[0]*p2.coords[0] + p1.coords[1]*p2.coords[1] + p1.coords[2]*p2.coords[2]; }
template< class Real1 , class Real2 >
static Real Dot( const Point3D< Real1 >& p1 , const Point3D< Real2 >& p2 ){ return Real( p1.coords[0]*p2.coords[0] + p1.coords[1]*p2.coords[1] + p1.coords[2]*p2.coords[2] ); }
};
template< class Real >
struct XForm3x3
{
Real coords[3][3];
XForm3x3( void ) { for( int i=0 ; i<3 ; i++ ) for( int j=0 ; j<3 ; j++ ) coords[i][j] = Real(0.); }
static XForm3x3 Identity( void )
{
XForm3x3 xForm;
xForm(0,0) = xForm(1,1) = xForm(2,2) = Real(1.);
return xForm;
}
Real& operator() ( int i , int j ){ return coords[i][j]; }
const Real& operator() ( int i , int j ) const { return coords[i][j]; }
template< class _Real > Point3D< _Real > operator * ( const Point3D< _Real >& p ) const
{
Point3D< _Real > q;
for( int i=0 ; i<3 ; i++ ) for( int j=0 ; j<3 ; j++ ) q[i] += _Real( coords[j][i] * p[j] );
return q;
}
XForm3x3 operator * ( const XForm3x3& m ) const
{
XForm3x3 n;
for( int i=0 ; i<3 ; i++ ) for( int j=0 ; j<3 ; j++ ) for( int k=0 ; k<3 ; k++ ) n.coords[i][j] += m.coords[i][k]*coords[k][j];
return n;
}
XForm3x3 transpose( void ) const
{
XForm3x3 xForm;
for( int i=0 ; i<3 ; i++ ) for( int j=0 ; j<3 ; j++ ) xForm( i , j ) = coords[j][i];
return xForm;
}
Real subDeterminant( int i , int j ) const
{
int i1 = (i+1)%3 , i2 = (i+2)%3;
int j1 = (j+1)%3 , j2 = (j+2)%3;
return coords[i1][j1] * coords[i2][j2] - coords[i1][j2] * coords[i2][j1];
}
Real determinant( void ) const { return coords[0][0] * subDeterminant( 0 , 0 ) + coords[1][0] * subDeterminant( 1 , 0 ) + coords[2][0] * subDeterminant( 2 , 0 ); }
XForm3x3 inverse( void ) const
{
XForm3x3 xForm;
Real d = determinant();
for( int i=0 ; i<3 ; i++ ) for( int j=0 ; j<3 ;j++ ) xForm.coords[j][i] = subDeterminant( i , j ) / d;
return xForm;
}
};
template< class Real >
struct XForm4x4
{
Real coords[4][4];
XForm4x4( void ) { for( int i=0 ; i<4 ; i++ ) for( int j=0 ; j<4 ; j++ ) coords[i][j] = Real(0.); }
static XForm4x4 Identity( void )
{
XForm4x4 xForm;
xForm(0,0) = xForm(1,1) = xForm(2,2) = xForm(3,3) = Real(1.);
return xForm;
}
Real& operator() ( int i , int j ){ return coords[i][j]; }
const Real& operator() ( int i , int j ) const { return coords[i][j]; }
template< class _Real > Point3D< _Real > operator * ( const Point3D< _Real >& p ) const
{
Point3D< _Real > q;
for( int i=0 ; i<3 ; i++ )
{
for( int j=0 ; j<3 ; j++ ) q[i] += (_Real)( coords[j][i] * p[j] );
q[i] += (_Real)coords[3][i];
}
return q;
}
XForm4x4 operator * ( const XForm4x4& m ) const
{
XForm4x4 n;
for( int i=0 ; i<4 ; i++ ) for( int j=0 ; j<4 ; j++ ) for( int k=0 ; k<4 ; k++ ) n.coords[i][j] += m.coords[i][k]*coords[k][j];
return n;
}
XForm4x4 transpose( void ) const
{
XForm4x4 xForm;
for( int i=0 ; i<4 ; i++ ) for( int j=0 ; j<4 ; j++ ) xForm( i , j ) = coords[j][i];
return xForm;
}
Real subDeterminant( int i , int j ) const
{
XForm3x3< Real > xForm;
int ii[] = { (i+1)%4 , (i+2)%4 , (i+3)%4 } , jj[] = { (j+1)%4 , (j+2)%4 , (j+3)%4 };
for( int _i=0 ; _i<3 ; _i++ ) for( int _j=0 ; _j<3 ; _j++ ) xForm( _i , _j ) = coords[ ii[_i] ][ jj[_j] ];
return xForm.determinant();
}
Real determinant( void ) const { return coords[0][0] * subDeterminant( 0 , 0 ) - coords[1][0] * subDeterminant( 1 , 0 ) + coords[2][0] * subDeterminant( 2 , 0 ) - coords[3][0] * subDeterminant( 3 , 0 ); }
XForm4x4 inverse( void ) const
{
XForm4x4 xForm;
Real d = determinant();
for( int i=0 ; i<4 ; i++ ) for( int j=0 ; j<4 ;j++ )
if( (i+j)%2==0 ) xForm.coords[j][i] = subDeterminant( i , j ) / d;
else xForm.coords[j][i] = -subDeterminant( i , j ) / d;
return xForm;
}
};
template<class Real>
Point3D<Real> RandomBallPoint(void);
template<class Real>
Point3D<Real> RandomSpherePoint(void);
template<class Real>
double Length(const Point3D<Real>& p);
template<class Real>
double SquareLength(const Point3D<Real>& p);
template<class Real>
double Distance(const Point3D<Real>& p1,const Point3D<Real>& p2);
template<class Real>
double SquareDistance(const Point3D<Real>& p1,const Point3D<Real>& p2);
template <class Real>
void CrossProduct(const Point3D<Real>& p1,const Point3D<Real>& p2,Point3D<Real>& p);
class Edge{
public:
double p[2][2];
double Length(void) const{
double d[2];
d[0]=p[0][0]-p[1][0];
d[1]=p[0][1]-p[1][1];
return sqrt(d[0]*d[0]+d[1]*d[1]);
}
};
class Triangle{
public:
double p[3][3];
double Area(void) const{
double v1[3] , v2[3] , v[3];
for( int d=0 ; d<3 ; d++ )
{
v1[d] = p[1][d] - p[0][d];
v2[d] = p[2][d] - p[0][d];
}
v[0] = v1[1]*v2[2] - v1[2]*v2[1];
v[1] = -v1[0]*v2[2] + v1[2]*v2[0];
v[2] = v1[0]*v2[1] - v1[1]*v2[0];
return sqrt( v[0]*v[0] + v[1]*v[1] + v[2]*v[2] ) / 2;
}
double AspectRatio(void) const{
double d=0;
int i,j;
for(i=0;i<3;i++){
for(i=0;i<3;i++)
for(j=0;j<3;j++){d+=(p[(i+1)%3][j]-p[i][j])*(p[(i+1)%3][j]-p[i][j]);}
}
return Area()/d;
}
};
class CoredPointIndex
{
public:
int index;
char inCore;
int operator == (const CoredPointIndex& cpi) const {return (index==cpi.index) && (inCore==cpi.inCore);};
int operator != (const CoredPointIndex& cpi) const {return (index!=cpi.index) || (inCore!=cpi.inCore);};
};
class EdgeIndex{
public:
int idx[2];
};
class CoredEdgeIndex
{
public:
CoredPointIndex idx[2];
};
class TriangleIndex{
public:
int idx[3];
};
class TriangulationEdge
{
public:
TriangulationEdge(void);
int pIndex[2];
int tIndex[2];
};
class TriangulationTriangle
{
public:
TriangulationTriangle(void);
int eIndex[3];
};
template<class Real>
class Triangulation
{
public:
std::vector<Point3D<Real> > points;
std::vector<TriangulationEdge> edges;
std::vector<TriangulationTriangle> triangles;
int factor( int tIndex,int& p1,int& p2,int& p3);
double area(void);
double area( int tIndex );
double area( int p1 , int p2 , int p3 );
int flipMinimize( int eIndex);
int addTriangle( int p1 , int p2 , int p3 );
protected:
hash_map<long long,int> edgeMap;
static long long EdgeIndex( int p1 , int p2 );
double area(const Triangle& t);
};
template<class Real>
void EdgeCollapse(const Real& edgeRatio,std::vector<TriangleIndex>& triangles,std::vector< Point3D<Real> >& positions,std::vector<Point3D<Real> >* normals);
template<class Real>
void TriangleCollapse(const Real& edgeRatio,std::vector<TriangleIndex>& triangles,std::vector<Point3D<Real> >& positions,std::vector<Point3D<Real> >* normals);
struct CoredVertexIndex
{
int idx;
bool inCore;
};
template< class Vertex >
class CoredMeshData
{
public:
std::vector< Vertex > inCorePoints;
virtual void resetIterator( void ) = 0;
virtual int addOutOfCorePoint( const Vertex& p ) = 0;
virtual int addOutOfCorePoint_s( const Vertex& p ) = 0;
virtual int addPolygon_s( const std::vector< CoredVertexIndex >& vertices ) = 0;
virtual int addPolygon_s( const std::vector< int >& vertices ) = 0;
virtual int nextOutOfCorePoint( Vertex& p )=0;
virtual int nextPolygon( std::vector< CoredVertexIndex >& vertices ) = 0;
virtual int outOfCorePointCount(void)=0;
virtual int polygonCount( void ) = 0;
};
template< class Vertex >
class CoredVectorMeshData : public CoredMeshData< Vertex >
{
std::vector< Vertex > oocPoints;
std::vector< std::vector< int > > polygons;
int polygonIndex;
int oocPointIndex;
public:
CoredVectorMeshData(void);
void resetIterator(void);
int addOutOfCorePoint( const Vertex& p );
int addOutOfCorePoint_s( const Vertex& p );
int addPolygon_s( const std::vector< CoredVertexIndex >& vertices );
int addPolygon_s( const std::vector< int >& vertices );
int nextOutOfCorePoint( Vertex& p );
int nextPolygon( std::vector< CoredVertexIndex >& vertices );
int outOfCorePointCount(void);
int polygonCount( void );
};
class BufferedReadWriteFile
{
bool tempFile;
FILE* _fp;
char *_buffer , _fileName[1024];
size_t _bufferIndex , _bufferSize;
public:
BufferedReadWriteFile( char* fileName=NULL , int bufferSize=(1<<20) );
~BufferedReadWriteFile( void );
bool write( const void* data , size_t size );
bool read ( void* data , size_t size );
void reset( void );
};
template< class Vertex >
class CoredFileMeshData : public CoredMeshData< Vertex >
{
char pointFileName[1024] , polygonFileName[1024];
BufferedReadWriteFile *oocPointFile , *polygonFile;
int oocPoints , polygons;
public:
CoredFileMeshData( void );
~CoredFileMeshData( void );
void resetIterator( void );
int addOutOfCorePoint( const Vertex& p );
int addOutOfCorePoint_s( const Vertex& p );
int addPolygon_s( const std::vector< CoredVertexIndex >& vertices );
int addPolygon_s( const std::vector< int >& vertices );
int nextOutOfCorePoint( Vertex& p );
int nextPolygon( std::vector< CoredVertexIndex >& vertices );
int outOfCorePointCount( void );
int polygonCount( void );
};
#include "Geometry.inl"
#endif // GEOMETRY_INCLUDED
|