[go: up one dir, main page]

File: dsift.c

package info (click to toggle)
colmap 3.5-1
  • links: PTS
  • area: main
  • in suites: buster
  • size: 20,564 kB
  • sloc: ansic: 170,595; cpp: 95,339; python: 2,335; makefile: 183; sh: 51
file content (775 lines) | stat: -rwxr-xr-x 24,724 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
/** @file dsift.c
 ** @brief Dense SIFT - Definition
 ** @author Andrea Vedaldi
 ** @author Brian Fulkerson
 **/

/*
Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
All rights reserved.

This file is part of the VLFeat library and is made available under
the terms of the BSD license (see the COPYING file).
*/

#include "dsift.h"
#include "pgm.h"
#include "mathop.h"
#include "imopv.h"
#include <math.h>
#include <string.h>

/**
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -->
@page dsift Dense Scale Invariant Feature Transform (DSIFT)
@author Andrea Vedaldi
@author Brian Fulkerson
@tableofcontents
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -->

@ref dsift.h implements a dense version of @ref sift.h "SIFT". This is
an object that can quickly compute descriptors for densely sampled
keypoints with identical size and orientation. It can be reused for
multiple images of the same size.

<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -->
@section dsift-intro Overview
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -->

@sa @ref sift "The SIFT module", @ref dsift-tech "Technical details"

This module implements a fast algorithm for the calculation of a large
number of SIFT descriptors of densely sampled features of the same
scale and orientation. See the @ref sift "SIFT module" for an
overview of SIFT.

The feature frames (keypoints) are indirectly specified by the
sampling steps (::vl_dsift_set_steps) and the sampling bounds
(::vl_dsift_set_bounds).  The descriptor geometry (number and size of
the spatial bins and number of orientation bins) can be customized
(::vl_dsift_set_geometry, ::VlDsiftDescriptorGeometry).

@image html dsift-geom.png "Dense SIFT descriptor geometry"

By default, SIFT uses a Gaussian windowing function that discounts
contributions of gradients further away from the descriptor
centers. This function can be changed to a flat window by invoking
::vl_dsift_set_flat_window. In this case, gradients are accumulated
using only bilinear interpolation, but instad of being reweighted by a
Gassuain window, they are all weighted equally. However, after
gradients have been accumulated into a spatial bin, the whole bin is
reweighted by the average of the Gaussian window over the spatial
support of that bin. This &ldquo;approximation&rdquo; substantially
improves speed with little or no loss of performance in applications.

Keypoints are sampled in such a way that the centers of the spatial
bins are at integer coordinates within the image boundaries. For
instance, the top-left bin of the top-left descriptor is centered on
the pixel (0,0). The bin immediately to the right at
(<code>binSizeX</code>,0), where <code>binSizeX</code> is a paramtere
in the ::VlDsiftDescriptorGeometry structure. ::vl_dsift_set_bounds
can be used to further restrict sampling to the keypoints in an image.

<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -->
 @section dsift-usage Usage
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -->

DSIFT is implemented by a ::VlDsiftFilter object that can be used
to process a sequence of images of a given geometry.
To use the <b>DSIFT filter</b>:

- Initialize a new DSIFT filter object by ::vl_dsift_new (or the simplified
::vl_dsift_new_basic). Customize the descriptor parameters by
::vl_dsift_set_steps, ::vl_dsift_set_geometry, etc.
- Process an image by ::vl_dsift_process.
- Retrieve the number of keypoints (::vl_dsift_get_keypoint_num), the
  keypoints (::vl_dsift_get_keypoints), and their descriptors
  (::vl_dsift_get_descriptors).
- Optionally repeat for more images.
- Delete the DSIFT filter by ::vl_dsift_delete.

<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -->
@section dsift-tech Technical details
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -->

This section extends the @ref sift-tech-descriptor "SIFT descriptor section"
and specialzies it to the case of dense keypoints.

<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -->
@subsection dsift-tech-descriptor-dense Dense descriptors
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -->

When computing descriptors for many keypoints differing only by their
position (and with null rotation), further simplifications are
possible. In this case, in fact,

@f{eqnarray*}
     \mathbf{x} &=& m \sigma \hat{\mathbf{x}} + T,\\
 h(t,i,j)
 &=&
 m \sigma \int
 g_{\sigma_\mathrm{win}}(\mathbf{x} - T)\,
 w_\mathrm{ang}(\angle J(\mathbf{x}) - \theta_t)\,
 w\left(\frac{x - T_x}{m\sigma} - \hat{x}_i\right)\,
 w\left(\frac{y - T_y}{m\sigma} - \hat{y}_j\right)\,
 |J(\mathbf{x})|\,
 d\mathbf{x}.
@f}

Since many different values of @e T are sampled, this is conveniently
expressed as a separable convolution. First, we translate by @f$
\mathbf{x}_{ij} = m\sigma(\hat x_i,\ \hat y_i)^\top @f$ and we use the
symmetry of the various binning and windowing functions to write

@f{eqnarray*}
 h(t,i,j)
 &=&
 m \sigma \int
 g_{\sigma_\mathrm{win}}(T' - \mathbf{x} - \mathbf{x}_{ij})\,
 w_\mathrm{ang}(\angle J(\mathbf{x}) - \theta_t)\,
 w\left(\frac{T'_x - x}{m\sigma}\right)\,
 w\left(\frac{T'_y - y}{m\sigma}\right)\,
 |J(\mathbf{x})|\,
 d\mathbf{x},
\\
T' &=& T + m\sigma
\left[\begin{array}{cc} x_i \\ y_j \end{array}\right].
@f}

Then we define kernels

@f{eqnarray*}
 k_i(x) &=&
 \frac{1}{\sqrt{2\pi} \sigma_{\mathrm{win}}}
 \exp\left(
 -\frac{1}{2}
 \frac{(x-x_i)^2}{\sigma_{\mathrm{win}}^2}
 \right)
 w\left(\frac{x}{m\sigma}\right),
 \\
 k_j(y) &=&
 \frac{1}{\sqrt{2\pi} \sigma_{\mathrm{win}}}
 \exp\left(
 -\frac{1}{2}
 \frac{(y-y_j)^2}{\sigma_{\mathrm{win}}^2}
 \right)
 w\left(\frac{y}{m\sigma}\right),
@f}

and obtain

@f{eqnarray*}
 h(t,i,j) &=& (k_ik_j * \bar J_t)\left( T + m\sigma
\left[\begin{array}{cc} x_i \\ y_j \end{array}\right] \right),
\\
\bar J_t(\mathbf{x}) &=&  w_\mathrm{ang}(\angle J(\mathbf{x}) - \theta_t)\,|J(\mathbf{x})|.
@f}

Furthermore, if we use a flat rather than Gaussian windowing function,
the kernels do not depend on the bin, and we have

@f{eqnarray*}
 k(z) &=&
 \frac{1}{\sigma_{\mathrm{win}}}
 w\left(\frac{z}{m\sigma}\right),
\\
 h(t,i,j) &=& (k(x)k(y) * \bar J_t)\left( T + m\sigma
\left[\begin{array}{cc} x_i \\ y_j \end{array}\right] \right),
@f}

(here @f$ \sigma_\mathrm{win} @f$ is the side of the flat window).

@note In this case the binning functions @f$ k(z) @f$ are triangular
and the convolution can be computed in time independent on the filter
(i.e. descriptor bin) support size by integral signals.

<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -->
@subsection dsift-tech-sampling Sampling
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  -->

To avoid resampling and dealing with special boundary conditions, we
impose some mild restrictions on the geometry of the descriptors that
can be computed. In particular, we impose that the bin centers @f$ T +
m\sigma (x_i,\ y_j) @f$ are always at integer coordinates within the
image boundaries. This eliminates the need for costly interpolation.
This condition amounts to (expressed in terms of the @e x coordinate,
and equally applicable to @e y)

@f[
 \{0,\dots, W-1\} \ni T_x + m\sigma x_i =
 T_x + m\sigma i - \frac{N_x-1}{2}
 = \bar T_x + m\sigma i,
 \qquad i = 0,\dots,N_x-1.
@f]

Notice that for this condition to be satisfied, the @em descriptor
center @f$ T_x @f$ needs to be either fractional or integer depending
on @f$ N_x @f$ being even or odd. To eliminate this complication,
it is simpler to use as a reference not the descriptor center @e T,
but the coordinates of the upper-left bin @f$ \bar T @f$. Thus we
sample the latter on a regular (integer) grid

@f[
 \left[\begin{array}{cc}
   0 \\
   0
 \end{array}\right]
 \leq
 \bar T =
 \left[\begin{array}{cc}
   \bar T_x^{\min} + p \Delta_x \\
   \bar T_y^{\min} + q \Delta_y \\
 \end{array}\right]
 \leq
 \left[\begin{array}{cc}
   W - 1 - m\sigma N_x \\
   H - 1 - m\sigma N_y
 \end{array}\right],
 \quad
 \bar T =
 \left[\begin{array}{cc}
   T_x - \frac{N_x - 1}{2} \\
   T_y - \frac{N_y - 1}{2} \\
  \end{array}\right]
@f]

and we impose that the bin size @f$ m \sigma @f$ is integer as well.

**/

/** ------------------------------------------------------------------
 ** @internal @brief Initialize new convolution kernel
 ** @param binSize
 ** @param numBins
 ** @param binIndex negative to use flat window.
 ** @param windowSize
 ** @return a pointer to new filter.
 **/

float *
_vl_dsift_new_kernel (int binSize, int numBins, int binIndex, double windowSize)
{
  int filtLen = 2 * binSize - 1 ;
  float * ker = vl_malloc (sizeof(float) * filtLen) ;
  float * kerIter = ker ;
  float delta = binSize * (binIndex - 0.5F * (numBins - 1)) ;
  /*
  float sigma = 0.5F * ((numBins - 1) * binSize + 1) ;
  float sigma = 0.5F * ((numBins) * binSize) ;
  */
  float sigma = (float) binSize * (float) windowSize ;
  int x ;

  for (x = - binSize + 1 ; x <= + binSize - 1 ; ++ x) {
    float z = (x - delta) / sigma ;
    *kerIter++ = (1.0F - fabsf(x) / binSize) *
      ((binIndex >= 0) ? expf(- 0.5F * z*z) : 1.0F) ;
  }
  return ker ;
}

static float
_vl_dsift_get_bin_window_mean
(int binSize, int numBins, int binIndex, double windowSize)
{
  float delta = binSize * (binIndex - 0.5F * (numBins - 1)) ;
  /*float sigma = 0.5F * ((numBins - 1) * binSize + 1) ;*/
  float sigma = (float) binSize * (float) windowSize ;
  int x ;

  float acc = 0.0 ;
  for (x = - binSize + 1 ; x <= + binSize - 1 ; ++ x) {
    float z = (x - delta) / sigma ;
    acc += ((binIndex >= 0) ? expf(- 0.5F * z*z) : 1.0F) ;
  }
  return acc /= (2 * binSize - 1) ;
}

/** ------------------------------------------------------------------
 ** @internal @brief Normalize histogram
 ** @param begin first element of the histogram.
 ** @param end last plus one element of the histogram.
 **
 ** The function divides the specified histogram by its l2 norm.
 **/

VL_INLINE float
_vl_dsift_normalize_histogram (float * begin, float * end)
{
  float * iter ;
  float  norm = 0.0F ;

  for (iter = begin ; iter < end ; ++ iter) {
    norm += (*iter) * (*iter) ;
  }
  norm = vl_fast_sqrt_f (norm) + VL_EPSILON_F ;

  for (iter = begin; iter < end ; ++ iter) {
    *iter /= norm ;
  }
  return norm ;
}

/** ------------------------------------------------------------------
 ** @internal @brief Free internal buffers
 ** @param self DSIFT filter.
 **/

static void
_vl_dsift_free_buffers (VlDsiftFilter* self)
{
  if (self->frames) {
    vl_free(self->frames) ;
    self->frames = NULL ;
  }
  if (self->descrs) {
    vl_free(self->descrs) ;
    self->descrs = NULL ;
  }
  if (self->grads) {
    int t ;
    for (t = 0 ; t < self->numGradAlloc ; ++t)
      if (self->grads[t]) vl_free(self->grads[t]) ;
    vl_free(self->grads) ;
    self->grads = NULL ;
  }
  self->numFrameAlloc = 0 ;
  self->numBinAlloc = 0 ;
  self->numGradAlloc = 0 ;
}

/** ------------------------------------------------------------------
 ** @internal @brief Updates internal buffers to current geometry
 **/

VL_EXPORT void
_vl_dsift_update_buffers (VlDsiftFilter * self)
{
  int x1 = self->boundMinX ;
  int x2 = self->boundMaxX ;
  int y1 = self->boundMinY ;
  int y2 = self->boundMaxY ;

  int rangeX = x2 - x1 - (self->geom.numBinX - 1) * self->geom.binSizeX ;
  int rangeY = y2 - y1 - (self->geom.numBinY - 1) * self->geom.binSizeY ;

  int numFramesX = (rangeX >= 0) ? rangeX / self->stepX + 1 : 0 ;
  int numFramesY = (rangeY >= 0) ? rangeY / self->stepY + 1 : 0 ;

  self->numFrames = numFramesX * numFramesY ;
  self->descrSize = self->geom.numBinT *
                    self->geom.numBinX *
                    self->geom.numBinY ;
}

/** ------------------------------------------------------------------
 ** @internal @brief Allocate internal buffers
 ** @param self DSIFT filter.
 **
 ** The function (re)allocates the internal buffers in accordance with
 ** the current image and descriptor geometry.
 **/

static void
_vl_dsift_alloc_buffers (VlDsiftFilter* self)
{
  _vl_dsift_update_buffers (self) ;
  {
    int numFrameAlloc = vl_dsift_get_keypoint_num (self) ;
    int numBinAlloc   = vl_dsift_get_descriptor_size (self) ;
    int numGradAlloc  = self->geom.numBinT ;

    /* see if we need to update the buffers */
    if (numBinAlloc != self->numBinAlloc ||
        numGradAlloc != self->numGradAlloc ||
        numFrameAlloc != self->numFrameAlloc) {

      int t ;

      _vl_dsift_free_buffers(self) ;

      self->frames = vl_malloc(sizeof(VlDsiftKeypoint) * numFrameAlloc) ;
      self->descrs = vl_malloc(sizeof(float) * numBinAlloc * numFrameAlloc) ;
      self->grads  = vl_malloc(sizeof(float*) * numGradAlloc) ;
      for (t = 0 ; t < numGradAlloc ; ++t) {
        self->grads[t] =
          vl_malloc(sizeof(float) * self->imWidth * self->imHeight) ;
      }
      self->numBinAlloc = numBinAlloc ;
      self->numGradAlloc = numGradAlloc ;
      self->numFrameAlloc = numFrameAlloc ;
    }
  }
}

/** ------------------------------------------------------------------
 ** @brief Create a new DSIFT filter
 **
 ** @param imWidth width of the image.
 ** @param imHeight height of the image
 **
 ** @return new filter.
 **/

VL_EXPORT VlDsiftFilter *
vl_dsift_new (int imWidth, int imHeight)
{
  VlDsiftFilter * self = vl_malloc (sizeof(VlDsiftFilter)) ;
  self->imWidth  = imWidth ;
  self->imHeight = imHeight ;

  self->stepX = 5 ;
  self->stepY = 5 ;

  self->boundMinX = 0 ;
  self->boundMinY = 0 ;
  self->boundMaxX = imWidth - 1 ;
  self->boundMaxY = imHeight - 1 ;

  self->geom.numBinX = 4 ;
  self->geom.numBinY = 4 ;
  self->geom.numBinT = 8 ;
  self->geom.binSizeX = 5 ;
  self->geom.binSizeY = 5 ;

  self->useFlatWindow = VL_FALSE ;
  self->windowSize = 2.0 ;

  self->convTmp1 = vl_malloc(sizeof(float) * self->imWidth * self->imHeight) ;
  self->convTmp2 = vl_malloc(sizeof(float) * self->imWidth * self->imHeight) ;

  self->numBinAlloc = 0 ;
  self->numFrameAlloc = 0 ;
  self->numGradAlloc = 0 ;

  self->descrSize = 0 ;
  self->numFrames = 0 ;
  self->grads = NULL ;
  self->frames = NULL ;
  self->descrs = NULL ;

  _vl_dsift_update_buffers(self) ;
  return self ;
}

/** ------------------------------------------------------------------
 ** @brief Create a new DSIFT filter (basic interface)
 ** @param imWidth width of the image.
 ** @param imHeight height of the image.
 ** @param step sampling step.
 ** @param binSize bin size.
 ** @return new filter.
 **
 ** The descriptor geometry matches the standard SIFT descriptor.
 **/

VL_EXPORT VlDsiftFilter *
vl_dsift_new_basic (int imWidth, int imHeight, int step, int binSize)
{
  VlDsiftFilter* self = vl_dsift_new(imWidth, imHeight) ;
  VlDsiftDescriptorGeometry geom = *vl_dsift_get_geometry(self) ;
  geom.binSizeX = binSize ;
  geom.binSizeY = binSize ;
  vl_dsift_set_geometry(self, &geom) ;
  vl_dsift_set_steps(self, step, step) ;
  return self ;
}

/** ------------------------------------------------------------------
 ** @brief Delete DSIFT filter
 ** @param self DSIFT filter.
 **/

VL_EXPORT void
vl_dsift_delete (VlDsiftFilter * self)
{
  _vl_dsift_free_buffers (self) ;
  if (self->convTmp2) vl_free (self->convTmp2) ;
  if (self->convTmp1) vl_free (self->convTmp1) ;
  vl_free (self) ;
}


/** ------------------------------------------------------------------
 ** @internal @brief Process with Gaussian window
 ** @param self DSIFT filter.
 **/

VL_INLINE void
_vl_dsift_with_gaussian_window (VlDsiftFilter * self)
{
  int binx, biny, bint ;
  int framex, framey ;
  float *xker, *yker ;

  int Wx = self->geom.binSizeX - 1 ;
  int Wy = self->geom.binSizeY - 1 ;

  for (biny = 0 ; biny < self->geom.numBinY ; ++biny) {

    yker = _vl_dsift_new_kernel (self->geom.binSizeY,
                                 self->geom.numBinY,
                                 biny,
                                 self->windowSize) ;

    for (binx = 0 ; binx < self->geom.numBinX ; ++binx) {

      xker = _vl_dsift_new_kernel(self->geom.binSizeX,
                                  self->geom.numBinX,
                                  binx,
                                  self->windowSize) ;

      for (bint = 0 ; bint < self->geom.numBinT ; ++bint) {

        vl_imconvcol_vf (self->convTmp1, self->imHeight,
                         self->grads[bint], self->imWidth, self->imHeight,
                         self->imWidth,
                         yker, -Wy, +Wy, 1,
                         VL_PAD_BY_CONTINUITY|VL_TRANSPOSE) ;

        vl_imconvcol_vf (self->convTmp2, self->imWidth,
                         self->convTmp1, self->imHeight, self->imWidth,
                         self->imHeight,
                         xker, -Wx, +Wx, 1,
                         VL_PAD_BY_CONTINUITY|VL_TRANSPOSE) ;

        {
          float *dst = self->descrs
            + bint
            + binx * self->geom.numBinT
            + biny * (self->geom.numBinX * self->geom.numBinT)  ;

          float *src = self->convTmp2 ;

          int frameSizeX = self->geom.binSizeX * (self->geom.numBinX - 1) + 1 ;
          int frameSizeY = self->geom.binSizeY * (self->geom.numBinY - 1) + 1 ;
          int descrSize = vl_dsift_get_descriptor_size (self) ;

          for (framey  = self->boundMinY ;
               framey <= self->boundMaxY - frameSizeY + 1 ;
               framey += self->stepY) {
            for (framex  = self->boundMinX ;
                 framex <= self->boundMaxX - frameSizeX + 1 ;
                 framex += self->stepX) {
              *dst = src [(framex + binx * self->geom.binSizeX) * 1 +
                          (framey + biny * self->geom.binSizeY) * self->imWidth]  ;
              dst += descrSize ;
            } /* framex */
          } /* framey */
        }

      } /* for bint */
      vl_free (xker) ;
    } /* for binx */
    vl_free (yker) ;
  } /* for biny */
}

/** ------------------------------------------------------------------
 ** @internal @brief Process with flat window.
 ** @param self DSIFT filter object.
 **/

VL_INLINE void
_vl_dsift_with_flat_window (VlDsiftFilter* self)
{
  int binx, biny, bint ;
  int framex, framey ;

  /* for each orientation bin */
  for (bint = 0 ; bint < self->geom.numBinT ; ++bint) {

    vl_imconvcoltri_f (self->convTmp1, self->imHeight,
                       self->grads [bint], self->imWidth, self->imHeight,
                       self->imWidth,
                       self->geom.binSizeY, /* filt size */
                       1, /* subsampling step */
                       VL_PAD_BY_CONTINUITY|VL_TRANSPOSE) ;

    vl_imconvcoltri_f (self->convTmp2, self->imWidth,
                       self->convTmp1, self->imHeight, self->imWidth,
                       self->imHeight,
                       self->geom.binSizeX,
                       1,
                       VL_PAD_BY_CONTINUITY|VL_TRANSPOSE) ;

    for (biny = 0 ; biny < self->geom.numBinY ; ++biny) {

      /*
      This fast version of DSIFT does not use a proper Gaussian
      weighting scheme for the gradiens that are accumulated on the
      spatial bins. Instead each spatial bins is accumulated based on
      the triangular kernel only, equivalent to bilinear interpolation
      plus a flat, rather than Gaussian, window. Eventually, however,
      the magnitude of the spatial bins in the SIFT descriptor is
      reweighted by the average of the Gaussian window on each bin.
      */

      float wy = _vl_dsift_get_bin_window_mean
        (self->geom.binSizeY, self->geom.numBinY, biny,
         self->windowSize) ;

      /* The convolution functions vl_imconvcoltri_* convolve by a
       * triangular kernel with unit integral. Instead for SIFT the
       * triangular kernel should have unit height. This is
       * compensated for by multiplying by the bin size:
       */

      wy *= self->geom.binSizeY ;

      for (binx = 0 ; binx < self->geom.numBinX ; ++binx) {
        float w ;
        float wx = _vl_dsift_get_bin_window_mean (self->geom.binSizeX,
                                                  self->geom.numBinX,
                                                  binx,
                                                  self->windowSize) ;

        float *dst = self->descrs
          + bint
          + binx * self->geom.numBinT
          + biny * (self->geom.numBinX * self->geom.numBinT)  ;

        float *src = self->convTmp2 ;

        int frameSizeX = self->geom.binSizeX * (self->geom.numBinX - 1) + 1 ;
        int frameSizeY = self->geom.binSizeY * (self->geom.numBinY - 1) + 1 ;
        int descrSize = vl_dsift_get_descriptor_size (self) ;

        wx *= self->geom.binSizeX ;
        w = wx * wy ;

        for (framey  = self->boundMinY ;
             framey <= self->boundMaxY - frameSizeY + 1 ;
             framey += self->stepY) {
          for (framex  = self->boundMinX ;
               framex <= self->boundMaxX - frameSizeX + 1 ;
               framex += self->stepX) {
            *dst = w * src [(framex + binx * self->geom.binSizeX) * 1 +
                            (framey + biny * self->geom.binSizeY) * self->imWidth]  ;
            dst += descrSize ;
          } /* framex */
        } /* framey */
      } /* binx */
    } /* biny */
  } /* bint */
}

/** ------------------------------------------------------------------
 ** @brief Compute keypoints and descriptors
 **
 ** @param self DSIFT filter.
 ** @param im   image data.
 **/

void vl_dsift_process (VlDsiftFilter* self, float const* im)
{
  int t, x, y ;

  /* update buffers */
  _vl_dsift_alloc_buffers (self) ;

  /* clear integral images */
  for (t = 0 ; t < self->geom.numBinT ; ++t)
    memset (self->grads[t], 0,
            sizeof(float) * self->imWidth * self->imHeight) ;

#undef at
#define at(x,y) (im[(y)*self->imWidth+(x)])

  /* Compute gradients, their norm, and their angle */

  for (y = 0 ; y < self->imHeight ; ++ y) {
    for (x = 0 ; x < self->imWidth ; ++ x) {
      float gx, gy ;
      float angle, mod, nt, rbint ;
      int bint ;

      /* y derivative */
      if (y == 0) {
        gy = at(x,y+1) - at(x,y) ;
      } else if (y == self->imHeight - 1) {
        gy = at(x,y) - at(x,y-1) ;
      } else {
        gy = 0.5F * (at(x,y+1) - at(x,y-1)) ;
      }

      /* x derivative */
      if (x == 0) {
        gx = at(x+1,y) - at(x,y) ;
      } else if (x == self->imWidth - 1) {
        gx = at(x,y) - at(x-1,y) ;
      } else {
        gx = 0.5F * (at(x+1,y) - at(x-1,y)) ;
      }

      /* angle and modulus */
      angle = vl_fast_atan2_f (gy,gx) ;
      mod = vl_fast_sqrt_f (gx*gx + gy*gy) ;

      /* quantize angle */
      nt = vl_mod_2pi_f (angle) * (self->geom.numBinT / (2*VL_PI)) ;
      bint = (int) vl_floor_f (nt) ;
      rbint = nt - bint ;

      /* write it back */
      self->grads [(bint    ) % self->geom.numBinT][x + y * self->imWidth] = (1 - rbint) * mod ;
      self->grads [(bint + 1) % self->geom.numBinT][x + y * self->imWidth] = (    rbint) * mod ;
    }
  }

  if (self->useFlatWindow) {
    _vl_dsift_with_flat_window(self) ;
  } else {
    _vl_dsift_with_gaussian_window(self) ;
  }

  {
    VlDsiftKeypoint* frameIter = self->frames ;
    float * descrIter = self->descrs ;
    int framex, framey, bint ;

    int frameSizeX = self->geom.binSizeX * (self->geom.numBinX - 1) + 1 ;
    int frameSizeY = self->geom.binSizeY * (self->geom.numBinY - 1) + 1 ;
    int descrSize = vl_dsift_get_descriptor_size (self) ;

    float deltaCenterX = 0.5F * self->geom.binSizeX * (self->geom.numBinX - 1) ;
    float deltaCenterY = 0.5F * self->geom.binSizeY * (self->geom.numBinY - 1) ;

    float normConstant = frameSizeX * frameSizeY ;

    for (framey  = self->boundMinY ;
         framey <= self->boundMaxY - frameSizeY + 1 ;
         framey += self->stepY) {

      for (framex  = self->boundMinX ;
           framex <= self->boundMaxX - frameSizeX + 1 ;
           framex += self->stepX) {

        frameIter->x    = framex + deltaCenterX ;
        frameIter->y    = framey + deltaCenterY ;

        /* mass */
        {
          float mass = 0 ;
          for (bint = 0 ; bint < descrSize ; ++ bint)
            mass += descrIter[bint] ;
          mass /= normConstant ;
          frameIter->norm = mass ;
        }

        /* L2 normalize */
        _vl_dsift_normalize_histogram (descrIter, descrIter + descrSize) ;

        /* clamp */
        for(bint = 0 ; bint < descrSize ; ++ bint)
          if (descrIter[bint] > 0.2F) descrIter[bint] = 0.2F ;

        /* L2 normalize */
        _vl_dsift_normalize_histogram (descrIter, descrIter + descrSize) ;

        frameIter ++ ;
        descrIter += descrSize ;
      } /* for framex */
    } /* for framey */
  }
}