1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
|
/** @file svm.c
** @brief Support Vector Machines (SVM) - Implementation
** @author Milan Sulc
** @author Daniele Perrone
** @author Andrea Vedaldi
**/
/*
Copyright (C) 2013 Milan Sulc.
Copyright (C) 2012 Daniele Perrone.
Copyright (C) 2011-13 Andrea Vedaldi.
All rights reserved.
This file is part of the VLFeat library and is made available under
the terms of the BSD license (see the COPYING file).
*/
/** @file svm.h
** @see @ref svm.
**/
/**
<!-- ------------------------------------------------------------- -->
@page svm Support Vector Machines (SVM)
@author Milan Sulc
@author Daniele Perrone
@author Andrea Vedaldi
@tableofcontents
<!-- ------------------------------------------------------------- -->
*Support Vector Machines* (SVMs) are one of the most popular types of
discriminate classifiers. VLFeat implements two solvers, SGD and SDCA,
capable of learning linear SVMs on a large scale. These linear solvers
can be combined with explicit feature maps to learn non-linear models
as well. The solver supports a few variants of the standard
SVM formulation, including using loss functions other than the hinge
loss.
@ref svm-starting demonstrates how to use VLFeat to learn an SVM.
Information on SVMs and the corresponding optimization algorithms as
implemented by VLFeat are given in:
- @subpage svm-fundamentals - Linear SVMs and their learning.
- @subpage svm-advanced - Loss functions, dual objective, and other details.
- @subpage svm-sgd - The SGD algorithm.
- @subpage svm-sdca - The SDCA algorithm.
<!-- ------------------------------------------------------------- -->
@section svm-starting Getting started
<!-- ------------------------------------------------------------- -->
This section demonstrates how to learn an SVM by using VLFeat. SVM
learning is implemented by the ::VlSvm object type. Let's
start by a complete example:
@code
#include <stdio.h>
#include <vl/svm.h>
int main()
{
vl_size const numData = 4 ;
vl_size const dimension = 2 ;
double x [dimension * numData] = {
0.0, -0.5,
0.6, -0.3,
0.0, 0.5
0.6, 0.0} ;
double y [numData] = {1, 1, -1, 1} ;
double lambda = 0.01;
double * const model ;
double bias ;
VlSvm * svm = vl_svm_new(VlSvmSolverSgd,
x, dimension, numData,
y,
lambda) ;
vl_svm_train(svm) ;
model = vl_svm_get_model(svm) ;
bias = vl_svm_get_bias(svm) ;
printf("model w = [ %f , %f ] , bias b = %f \n",
model[0],
model[1],
bias);
vl_svm_delete(svm) ;
return 0;
}
@endcode
This code learns a binary linear SVM using the SGD algorithm on
four two-dimensional points using 0.01 as regularization parameter.
::VlSvmSolverSdca can be specified in place of ::VlSvmSolverSdca
in orer to use the SDCA algorithm instead.
Convergence and other diagnostic information can be obtained after
training by using the ::vl_svm_get_statistics function. Algorithms
regularly check for convergence (usally after each pass over the data).
The ::vl_svm_set_diagnostic_function can be used to specify a callback
to be invoked when diagnostic is run. This can be used, for example,
to dump information on the screen as the algorithm progresses.
Convergence is reached after a maximum number of iterations
(::vl_svm_set_max_num_iterations) or after a given criterion falls
below a threshold (::vl_svm_set_epsilon). The meaning of these
may depend on the specific algorithm (see @ref svm for further details).
::VlSvm is a quite powerful object. Algorithms only need to perform
inner product and accumulation operation on the data (see @ref svm-advanced).
This is used to abstract from the data type and support almost anything
by speciying just two functions (::vl_svm_set_data_functions).
A simple interface to this advanced functionality is provided by the
::VlSvmDataset object. This supports natively @c float and @c double
data types, as well as applying on the fly the homogeneous kernel map
(@ref homkermap). This is exemplified in @ref svmdataset-starting.
*/
/**
<!-- ------------------------------------------------------------- -->
@page svm-fundamentals SVM fundamentals
@tableofcontents
<!-- ------------------------------------------------------------- -->
This page introduces the SVM formulation used in VLFeat. See @ref svm
for more information on VLFeat SVM support.
Let $ \bx \in \real^d $ be a vector representing, for example, an
image, an audio track, or a fragment of text. Our goal is to design a
*classifier*, i.e. a function that associates to each vector $\bx$ a
positive or negative label based on a desired criterion, for example
the fact that the image contains or not a cat, that the audio track
contains or not English speech, or that the text is or not a
scientific paper.
The vector $\bx$ is classified by looking at the sign of a *linear
scoring function* $\langle \bx, \bw \rangle$. The goal of learning is
to estimate the parameter $\bw \in \real^d$ in such a way that the
score is positive if the vector $\bx$ belongs to the positive class
and negative otherwise. In fact, in the standard SVM formulation the
the goal is to have a score of *at least 1* in the first case, and of
*at most -1* in the second one, imposing a *margin*.
The parameter $\bw$ is estimated or *learned* by fitting the scoring
function to a training set of $n$ example pairs $(\bx_i,y_i),
i=1,\dots,n$. Here $y_i \in \{-1,1\}$ are the *ground truth labels* of
the corresponding example vectors. The fit quality is measured by a
*loss function* which, in standard SVMs, is the *hinge loss*:
\[
\ell_i(\langle \bw,\bx\rangle) = \max\{0, 1 - y_i \langle \bw,\bx\rangle\}.
\]
Note that the hinge loss is zero only if the score $\langle
\bw,\bx\rangle$ is at least 1 or at most -1, depending on the label
$y_i$.
Fitting the training data is usually insufficient. In order for the
scoring function *generalize to future data* as well, it is usually
preferable to trade off the fitting accuracy with the *regularity* of
the learned scoring function $\langle \bx, \bw \rangle$. Regularity in
the standard formulation is measured by the norm of the parameter
vector $\|\bw\|^2$ (see @ref svm-advanced). Averaging the loss on all
training samples and adding to it the regularizer weighed by a
parameter $\lambda$ yields the *regularized loss objective*
@f{equation}{
\boxed{\displaystyle
E(\bw) = \frac{\lambda}{2} \left\| \bw \right\|^2
+ \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i \langle \bw,\bx\rangle\}.
\label{e:svm-primal-hinge}
}
@f}
Note that this objective function is *convex*, so that there exists a
single global optimum.
The scoring function $\langle \bx, \bw \rangle$ considered so far has
been linear and unbiased. @ref svm-bias discusses how a bias term can
be added to the SVM and @ref svm-feature-maps shows how non-linear
SVMs can be reduced to the linear case by computing suitable feature
maps.
@ref svm-learning shows how VLFeat can be used to learn an SVM by
minimizing $E(\bw)$.
<!-- ------------------------------------------------------------- -->
@section svm-learning Learning
<!-- ------------------------------------------------------------- -->
Learning an SVM amounts to finding the minimizer $\bw^*$ of the cost
function $E(\bw)$. While there are dozens of methods that can be used
to do so, VLFeat implements two large scale methods, designed to work
with linear SVMs (see @ref svm-feature-maps to go beyond linear):
- @ref svm-sgd
- @ref svm-sdca
Using these solvers is exemplified in @ref svm-starting.
<!-- ------------------------------------------------------------- -->
@section svm-bias Adding a bias
<!-- ------------------------------------------------------------- -->
It is common to add to the SVM scoring function a *bias term* $b$, and
to consider the score $\langle \bx,\bw \rangle + b$. In practice the
bias term can be crucial to fit the training data optimally, as there
is no reason why the inner products $\langle \bx,\bw \rangle$ should
be naturally centered at zero.
Some SVM learning algorithms can estimate both $\bw$ and $b$
directly. However, other algorithms such as SGD and SDCA cannot. In
this case, a simple workaround is to add a constant component $B > 0$
(we call this constant the *bias multiplier*) to the data,
i.e. consider the extended data vectors:
\[
\bar \bx = \begin{bmatrix} \bx \\ B \end{bmatrix},
\quad
\bar \bw = \begin{bmatrix} \bw \\ w_b \end{bmatrix}.
\]
In this manner the scoring function incorporates implicitly a bias $b = B w_b$:
\[
\langle \bar\bx, \bar\bw \rangle =
\langle \bx, \bw \rangle + B w_b.
\]
The disadvantage of this reduction is that the term $w_b^2$ becomes
part of the SVM regularizer, which shrinks the bias $b$ towards
zero. This effect can be alleviated by making $B$ sufficiently large,
because in this case $\|\bw\|^2 \gg w_b^2$ and the shrinking effect is
negligible.
Unfortunately, making $B$ too large makes the problem numerically
unbalanced, so a reasonable trade-off between shrinkage and stability
is generally sought. Typically, a good trade-off is obtained by
normalizing the data to have unitary Euclidean norm and then choosing
$B \in [1, 10]$.
Specific implementations of SGD and SDCA may provide explicit support
to learn the bias in this manner, but it is important to understand
the implications on speed and accuracy of the learning if this is
done.
<!-- ------------------------------------------------------------- -->
@section svm-feature-maps Non-linear SVMs and feature maps
<!-- ------------------------------------------------------------- -->
So far only linear scoring function $\langle \bx,\bw \rangle$ have
been considered. Implicitly, however, this assumes that the objects to
be classified (e.g. images) have been encoded as vectors $\bx$ in a
way that makes linear classification possible. This encoding step can
be made explicit by introducing the *feature map* $\Phi(\bx) \in
\real^d$. Including the feature map yields a scoring function
*non-linear* in $\bx$:
\[
\bx\in\mathcal{X} \quad\longrightarrow\quad \langle \Phi(\bx), \bw \rangle.
\]
The nature of the input space $\mathcal{X}$ can be arbitrary and might
not have a vector space structure at all.
The representation or encoding captures a notion of *similarity*
between objects: if two vectors $\Phi(\bx_1)$ and $\Phi(\bx_2)$ are
similar, then their scores will also be similar. Note that choosing a
feature map amounts to incorporating this information in the model
*prior* to learning.
The relation of feature maps to similarity functions is formalized by
the notion of a *kernel*, a positive definite function $K(\bx,\bx')$
measuring the similarity of a pair of objects. A feature map defines a
kernel by
\[
K(\bx,\bx') = \langle \Phi(\bx),\Phi(\bx') \rangle.
\]
Viceversa, any kernel function can be represented by a feature map in
this manner, establishing an equivalence.
So far, all solvers in VLFeat assume that the feature map $\Psi(\bx)$
can be explicitly computed. Although classically kernels were
introduced to generalize solvers to non-linear SVMs for which a
feature map *cannot* be computed (e.g. for a Gaussian kernel the
feature map is infinite dimensional), in practice using explicit
feature representations allow to use much faster solvers, so it makes
sense to *reverse* this process.
*/
/**
<!-- ------------------------------------------------------------- -->
@page svm-advanced Advanced SVM topics
@tableofcontents
<!-- ------------------------------------------------------------- -->
This page discusses advanced SVM topics. For an introduction to SVMs,
please refer to @ref svm and @ref svm-fundamentals.
<!-- ------------------------------------------------------------- -->
@section svm-loss-functions Loss functions
<!-- ------------------------------------------------------------- -->
The SVM formulation given in @ref svm-fundamentals uses the
hinge loss, which is only one of a variety of loss functions that
are often used for SVMs. More in general, one
can consider the objective
@f{equation}{
E(\bw) = \frac{\lambda}{2} \left\| \bw \right\|^2 + \frac{1}{n} \sum_{i=1}^n \ell_i(\langle \bw,\bx\rangle).
\label{e:svm-primal}
@f}
where the loss $\ell_i(z)$ is a convex function of the scalar variable
$z$. Losses differ by: (i) their purpose (some are suitable for
classification, other for regression), (ii) their smoothness (which
usually affects how quickly the SVM objective function can be
minimized), and (iii) their statistical interpretation (for example
the logistic loss can be used to learn logistic models).
Concrete examples are the:
<table>
<tr>
<td>Name</td>
<td>Loss $\ell_i(z)$</td>
<td>Description</td>
</tr>
<tr>
<td>Hinge</td>
<td>$\max\{0, 1-y_i z\}$</td>
<td>The standard SVM loss function.</td>
</tr>
<tr>
<td>Square hinge</td>
<td>$\max\{0, 1-y_i z\}^2$</td>
<td>The standard SVM loss function, but squared. This version is
smoother and may yield numerically easier problems.</td>
</tr>
<tr>
<td>Square or l2</td>
<td>$(y_i - z)^2$</td>
<td>This loss yields the ridge regression model (l2 regularised least
square).</td>
</tr>
<tr>
<td>Linear or l1</td>
<td>$|y_i - z|$</td>
<td>Another loss suitable for regression, usually more robust but
harder to optimize than the squared one.</td>
</tr>
<tr>
<td>Insensitive l1</td>
<td>$\max\{0, |y_i - z| - \epsilon\}$.</td>
<td>This is a variant of the previous loss, proposed in the original
Support Vector Regression formulation. Differently from the previous
two losses, the insensitivity may yield to a sparse selection of
support vectors.</td>
</tr>
<tr>
<td>Logistic</td>
<td>$\log(1 + e^{-y_i z})$</td>
<td>This corresponds to regularized logisitc regression. The loss can
be seen as a negative log-likelihood: $\ell_i(z) = -\log P[y_i | z] =
- \log \sigma(y_iz/2)$, where $\sigma(z) = e^z/(1 + e^z)$ is the
sigmoid function, mapping a score $z$ to a probability. The $1/2$
factor in the sigmoid is due to the fact that labels are in $\{-1,1\}$
rather than $\{0,1\}$ as more common for the standard sigmoid
model.</td>
</tr>
</table>
<!-- ------------------------------------------------------------- -->
@section svm-data-abstraction Data abstraction: working with compressed data
<!-- ------------------------------------------------------------- -->
VLFeat learning algorithms (SGD and SDCA) access the data by means of
only two operations:
- *inner product*: computing the inner product between the model and
a data vector, i.e. $\langle \bw, \bx \rangle$.
- *accumulation*: summing a data vector to the model, i.e. $\bw
\leftarrow \bw + \beta \bx$.
VLFeat learning algorithms are *parameterized* in these two
operations. As a consequence, the data can be stored in any format
suitable to the user (e.g. dense matrices, sparse matrices,
block-sparse matrices, disk caches, and so on) provided that these two
operations can be implemented efficiently. Differently from the data,
however, the model vector $\bw$ is represented simply as a dense array
of doubles. This choice is adequate in almost any case.
A particularly useful aspect of this design choice is that the
training data can be store in *compressed format* (for example by
using product quantization (PQ)). Furthermore, higher-dimensional
encodings such as the homogeneous kernel map (@ref homkermap) and the
intersection kernel map can be *computed on the fly*. Such techniques
are very important when dealing with GBs of data.
<!-- ------------------------------------------------------------- -->
@section svm-dual-problem Dual problem
<!-- ------------------------------------------------------------- -->
In optimization, the *dual objective* $D(\balpha)$ of the SVM
objective $E(\bw)$ is of great interest. To obtain the dual objective,
one starts by approximating each loss term from below by a family of planes:
\[
\ell_i(z) = \sup_{u} (u z - \ell_i^*(u) ),
\qquad
\ell_i^*(u) = \sup_{z} (z u - \ell_i(z) )
\]
where $\ell_i^*(u)$ is the *dual conjugate* of the loss and gives the
intercept of each approximating plane as a function of the slope. When
the loss function is convex, the approximation is in fact exact. Examples
include:
<table>
<tr>
<td>Name</td>
<td>Loss $\ell_i(z)$</td>
<td>Conjugate loss $\ell_i^*(u)$</td>
</tr>
<tr>
<td>Hinge</td>
<td>$\max\{0, 1-y_i z\}$</td>
<td>\[
\ell_i^*(u) =
\begin{cases}
y_i u, & -1 \leq y_i u \leq 0, \\
+\infty, & \text{otherwise}
\end{cases}
\]</td>
</tr>
<tr>
<td>Square hinge</td>
<td>$\max\{0, 1-y_i z\}^2$</td>
<td>\[\ell_i^*(u) =
\begin{cases}
y_i u + \frac{u^2}{4}, & y_i u \leq 0, \\
+\infty, & \text{otherwise} \\
\end{cases}\]</td>
</tr>
<tr>
<td>Linear or l1</td>
<td>$|y_i - z|$</td>
<td>\[\ell_i^*(u) =
\begin{cases}
y_i u, & -1 \leq y_i u \leq 1, \\
+\infty, & \text{otherwise} \\
\end{cases}\]</td>
</tr>
<tr>
<td>Square or l2</td>
<td>$(y_i - z)^2$</td>
<td>\[\ell_i^*(u)=y_iu + \frac{u^2}{4}\]</td>
</tr>
<tr>
<td>Insensitive l1</td>
<td>$\max\{0, |y_i - z| - \epsilon\}$.</td>
<td></td>
</tr>
<tr>
<td>Logistic</td>
<td>$\log(1 + e^{-y_i z})$</td>
<td>\[\ell_i^*(u) =
\begin{cases}
(1+u) \log(1+u) - u \log(-u), & -1 \leq y_i u \leq 0, \\
+\infty, & \text{otherwise} \\
\end{cases}\]
</td>
</tr>
</table>
Since each plane $- z \alpha_i - \ell^*_i(-\alpha_i) \leq \ell_i(z)$
bounds the loss from below, by substituting in $E(\bw)$ one can write
a lower bound for the SVM objective
\[
F(\bw,\balpha) = \frac{\lambda}{2} \|\bw\|^2 -
\frac{1}{n}\sum_{i=1}^n (\bw^\top \bx_i\alpha_i + \ell_i^*(-\alpha_i))
\leq E(\bw).
\]
for each setting of the *dual variables* $\alpha_i$. The dual
objective function $D(\balpha)$ is obtained by minimizing the lower
bound $F(\bw,\balpha)$ w.r.t. to $\bw$:
\[
D(\balpha) = \inf_{\bw} F(\bw,\balpha) \leq E(\bw).
\]
The minimizer and the dual objective are now easy to find:
\[
\boxed{\displaystyle
\bw(\balpha) =
\frac{1}{\lambda n}
\sum_{i=1}^n \bx_i \alpha_i = \frac{1}{\lambda n} X\balpha,
\quad
D(\balpha) = - \frac{1}{2\lambda n^2} \balpha^\top X^\top X \balpha +
\frac{1}{n} \sum_{i=1}^n - \ell_i^*(-\alpha_i)
}
\]
where $X = [\bx_1, \dots, \bx_n]$ is the data matrix. Since the dual
is uniformly smaller than the primal, one has the *duality gap* bound:
\[
D(\balpha) \leq P(\bw^*) \leq P(\bw(\balpha))
\]
This bound can be used to evaluate how far off $\bw(\balpha)$ is from
the primal minimizer $\bw^*$. In fact, due to convexity, this bound
can be shown to be zero when $\balpha^*$ is the dual maximizer (strong
duality):
\[
D(\balpha^*) = P(\bw^*) = P(\bw(\balpha^*)),
\quad \bw^* = \bw(\balpha^*).
\]
<!-- ------------------------------------------------------------- -->
@section svm-C Parametrization in C
<!-- ------------------------------------------------------------- -->
Often a slightly different form of the SVM objective is considered,
where a parameter $C$ is used to scale the loss instead of the regularizer:
\[
E_C(\bw) = \frac{1}{2} \|\bw\|^2 + C \sum_{i=1}^n \ell_i(\langle \bx_i, \bw\rangle)
\]
This and the objective function $E(\bw)$ in $\lambda$ are equivalent
(proportional) if
\[
\lambda = \frac{1}{nC},
\qquad C = \frac{1}{n\lambda}.
\] up to an overall scaling factor to the problem.
**/
/**
<!-- ------------------------------------------------------------- -->
@page svm-sdca Stochastic Dual Coordinate Ascent
@tableofcontents
<!-- ------------------------------------------------------------- -->
This page describes the *Stochastic Dual Coordinate Ascent* (SDCA)
linear SVM solver. Please see @ref svm for an overview of VLFeat SVM
support.
SDCA maximizes the dual SVM objective (see @ref svm-dual-problem
for a derivation of this expression):
\[
D(\balpha) = - \frac{1}{2\lambda n^2} \balpha^\top X^\top X \balpha +
\frac{1}{n} \sum_{i=1}^n - \ell_i^*(-\alpha_i)
\]
where $X$ is the data matrix. Recall that the primal parameter
corresponding to a given setting of the dual variables is:
\[
\bw(\balpha) = \frac{1}{\lambda n} \sum_{i=1}^n \bx_i \alpha_i = \frac{1}{\lambda n} X\balpha
\]
In its most basic form, the *SDCA algorithm* can be summarized as follows:
- Let $\balpha_0 = 0$.
- Until the duality gap $P(\bw(\balpha_t)) - D(\balpha_t) < \epsilon$
- Pick a dual variable $q$ uniformly at random in $1, \dots, n$.
- Maximize the dual with respect to this variable: $\Delta\alpha_q = \max_{\Delta\alpha_q} D(\balpha_t + \Delta\alpha_q \be_q )$
- Update $\balpha_{t+1} = \balpha_{t} + \be_q \Delta\alpha_q$.
In VLFeat, we partially use the nomenclature from @cite{shwartz13a-dual} and @cite{hsieh08a-dual}.
<!-- ------------------------------------------------------------- -->
@section svm-sdca-dual-max Dual coordinate maximization
<!-- ------------------------------------------------------------- -->
The updated dual objective can be expanded as:
\[
D(\balpha_t + \be_q \Delta\alpha_q) =
\text{const.}
- \frac{1}{2\lambda n^2} \bx_q^\top \bx_q (\Delta\alpha_q)^2
- \frac{1}{n} \bx_q^\top \frac{X\alpha_t}{\lambda n} \Delta\alpha_q
- \frac{1}{n} \ell^*_q(- \alpha_q - \Delta\alpha_q)
\]
This can also be written as
@f{align*}
D(\balpha_t + \be_q \Delta\alpha_q) &\propto
- \frac{A}{2} (\Delta\alpha_q)^2
- B \Delta\alpha_q
- \ell^*_q(- \alpha_q - \Delta\alpha_q),
\\
A &= \frac{1}{\lambda n} \bx_q^\top \bx_q = \frac{1}{\lambda n} \| \bx_q \|^2,
\\
B &= \bx_q^\top \frac{X\balpha_t}{\lambda n} = \bx_q^\top \bw_t.
@f}
Maximizing this quantity in the scalar variable $\Delta\balpha$ is usually
not difficult. It is convenient to store and incrementally
update the model $\bw_t$ after the optimal step $\Delta\balpha$ has been
determined:
\[
\bw_t = \frac{X \balpha_t}{\lambda n},
\quad \bw_{t+1} = \bw_t + \frac{1}{\lambda n }\bx_q \be_q \Delta\alpha_q.
\]
For example, consider the hinge loss as given in @ref svm-advanced :
\[
\ell_q^*(u) =
\begin{cases}
y_q u, & -1 \leq y_q u \leq 0, \\
+\infty, & \text{otherwise}.
\end{cases}
\]
The maximizer $\Delta\alpha_q$ of the update objective must be in the
range where the conjugate loss is not infinite. Ignoring such bounds,
the update can be obtained by setting the derivative of the objective
to zero, obtaining
\[
\tilde {\Delta \alpha_q}= \frac{y_q - B}{A}.
\]
Note that $B$ is simply current score associated by the SVM to
the sample $\bx_q$. Incorporating the constraint $-1 \leq - y_q
(\alpha_q + \Delta \alpha_q) \leq 0$,
i.e. $0 \leq y_q (\alpha_q + \Delta \alpha_q) \leq 1$, one obtains the update
\[
\Delta\alpha_q = y_q \max\{0, \min\{1, y_q (\tilde {\Delta\alpha_q } + \alpha_q)\}\} - \alpha_q.
\]
<!-- ------------------------------------------------------------ --->
@section svm-sdca-details Implementation details
<!-- ------------------------------------------------------------ --->
Rather than visiting points completely at random, VLFeat SDCA follows
the best practice of visiting all the points at every epoch (pass
through the data), changing the order of the visit randomly by picking
every time a new random permutation.
**/
/**
<!-- ------------------------------------------------------------- -->
@page svm-sgd Stochastic Gradient Descent
@tableofcontents
<!-- ------------------------------------------------------------- -->
This page describes the *Stochastic Gradient Descent* (SGD) linear SVM
solver. SGD minimizes directly the primal SVM objective (see @ref svm):
\[
E(\bw) = \frac{\lambda}{2} \left\| \bw \right\|^2 + \frac{1}{n} \sum_{i=1}^n
\ell_i(\langle \bw,\bx\rangle)
\]
Firts, rewrite the objective as the average
\[
E(\bw) = \frac{1}{n} \sum_{i=1}^n E_i(\bw),
\quad
E_i(\bw) = \frac{\lambda}{2} \left\| \bw \right\|^2 + \ell_i(\langle \bw,\bx\rangle).
\]
Then SGD performs gradient steps by considering at each iteration
one term $E_i(\bw)$ selected at random from this average.
In its most basic form, the algorithm is:
- Start with $\bw_0 = 0$.
- For $t=1,2,\dots T$:
- Sample one index $i$ in $1,\dots,n$ uniformly at random.
- Compute a subgradient $\bg_t$ of $E_i(\bw)$ at $\bw_t$.
- Compute the learning rate $\eta_t$.
- Update $\bw_{t+1} = \bw_t - \eta_t \bg_t$.
Provided that the learning rate $\eta_t$ is chosen correctly, this
simple algorithm is guaranteed to converge to the minimizer $\bw^*$ of
$E$.
<!-- ------------------------------------------------------------- -->
@section svm-sgd-convergence Convergence and speed
<!-- ------------------------------------------------------------- -->
The goal of the SGD algorithm is to bring the *primal suboptimality*
below a threshold $\epsilon_P$:
\[
E(\bw_t) - E(\bw^*) \leq \epsilon_P.
\]
If the learning rate $\eta_t$ is selected appropriately, SGD can be
shown to converge properly. For example,
@cite{shalev-shwartz07pegasos} show that, since $E(\bw)$ is
$\lambda$-strongly convex, then using the learning rate
\[
\boxed{\eta_t = \frac{1}{\lambda t}}
\]
guarantees that the algorithm reaches primal-suboptimality $\epsilon_P$ in
\[
\tilde O\left( \frac{1}{\lambda \epsilon_P} \right).
\]
iterations. This particular SGD variant is sometimes known as PEGASOS
@cite{shalev-shwartz07pegasos} and is the version implemented in
VLFeat.
The *convergence speed* is not sufficient to tell the *learning speed*,
i.e. how quickly an algorithm can learn an SVM that performs optimally
on the test set. The following two observations
can be used to link convergence speed to learning speed:
- The regularizer strength is often heuristically selected to be
inversely proportional to the number of training samples: $\lambda =
\lambda_0 /n$. This reflects the fact that with more training data
the prior should count less.
- The primal suboptimality $\epsilon_P$ should be about the same as
the estimation error of the SVM primal. This estimation error is due
to the finite training set size and can be shown to be of the order
of $1/\lambda n = 1 / \lambda_0$.
Under these two assumptions, PEGASOS can learn a linear SVM in time
$\tilde O(n)$, which is *linear in the number of training
examples*. This fares much better with $O(n^2)$ or worse of non-linear
SVM solvers.
<!-- ------------------------------------------------------------- -->
@section svm-sgd-bias The bias term
<!-- ------------------------------------------------------------- -->
Adding a bias $b$ to the SVM scoring function $\langle \bw, \bx
\rangle +b$ is done, as explained in @ref svm-bias, by appending a
constant feature $B$ (the *bias multiplier*) to the data vectors $\bx$
and a corresponding weight element $w_b$ to the weight vector $\bw$,
so that $b = B w_b$ As noted, the bias multiplier should be
relatively large in order to avoid shrinking the bias towards zero,
but small to make the optimization stable. In particular, setting $B$
to zero learns an unbiased SVM (::vl_svm_set_bias_multiplier).
To counter instability caused by a large bias multiplier, the learning
rate of the bias is slowed down by multiplying the overall learning
rate $\eta_t$ by a bias-specific rate coefficient
(::vl_svm_set_bias_learning_rate).
As a rule of thumb, if the data vectors $\bx$ are $l^2$ normalized (as
they typically should for optimal performance), then a reasonable bias
multiplier is in the range 1 to 10 and a reasonable bias learning rate
is somewhere in the range of the inverse of that (in this manner the
two parts of the extended feature vector $(\bx, B)$ are balanced).
<!-- ------------------------------------------------------------- -->
@section svm-sgd-starting-iteration Adjusting the learning rate
<!-- ------------------------------------------------------------- -->
Initially, the learning rate $\eta_t = 1/\lambda t$ is usually too
fast: as usually $\lambda \ll 1$, $\eta_1 \gg 1$. But this is clearly
excessive (for example, without a loss term, the best learning rate at
the first iteration is simply $\eta_1=1$, as this nails the optimum in
one step). Thus, the learning rate formula is modified to be $\eta_t =
1 / \lambda (t + t_0)$, where $t_0 \approx 2/\lambda$, which is
equivalent to start $t_0$ iterations later. In this manner $\eta_1
\approx 1/2$.
<!-- ------------------------------------------------------------ --->
@subsection svm-sgd-warm-start Warm start
<!-- ------------------------------------------------------------ --->
Starting from a given model $\bw$ is easy in SGD as the optimization
runs in the primal. However, the starting iteration index $t$ should
also be advanced for a warm start, as otherwise the initial setting of
$\bw$ is rapidly forgot (::vl_svm_set_model, ::vl_svm_set_bias,
::vl_svm_set_iteration_number).
<!-- ------------------------------------------------------------- -->
@section svm-sgd-details Implementation details
<!-- ------------------------------------------------------------- -->
@par "Random sampling of points"
Rather than visiting points completely at random, VLFeat SDCA follows
the best practice of visiting all the points at every epoch (pass
through the data), changing the order of the visit randomly by picking
every time a new random permutation.
@par "Factored representation"
At each iteration, the SGD algorithm updates the vector $\bw$
(including the additional bias component $w_b$) as $\bw_{t+1}
\leftarrow \bw_t - \lambda \eta_t \bw_t - \eta_t \bg_t$, where
$\eta_t$ is the learning rate. If the subgradient of the loss function
$\bg_t$ is zero at a given iteration, this amounts to simply shrink
$\bw$ towards the origin by multiplying it by the factor $1 - \lambda
\eta_t$. Thus such an iteration can be accelerated significantly by
representing internally $\bw_t = f_t \bu_t$, where $f_t$ is a scaling
factor. Then, the update becomes
\[
f_{t+1} \bu_{t+1}
= f_{t} \bu_{t} - \lambda \eta_t f_{t} \bu_{t} - \eta_t \bg_t
= (1-\lambda \eta_t) f_{t} \bu_{t} - \eta_t \bg_t.
\]
Setting $f_{t+1} = (1-\lambda \eta_t) f_{t}$, this gives the update
equation for $\bu_t$
\[
\bu_{t+1} = \bu_{t} - \frac{\eta_t}{f_{t+1}} \bg_t.
\]
but this step can be skipped whenever $\bg_t$ is equal to zero.
When the bias component has a different learning rate, this scheme
must be adjusted slightly by adding a separated factor for the bias,
but it is otherwise identical.
**/
/*
<!-- ------------------------------------------------------------ --->
@section svm-pegasos PEGASOS
<!-- ------------------------------------------------------------ --->
<!-- ------------------------------------------------------------ --->
@subsection svm-pegasos-algorithm Algorithm
<!-- ------------------------------------------------------------ --->
PEGASOS @cite{shalev-shwartz07pegasos} is a stochastic subgradient
optimizer. At the <em>t</em>-th iteration the algorithm:
- Samples uniformly at random as subset @f$ A_t @f$ of <em>k</em> of
training pairs @f$(x,y)@f$ from the <em>m</em> pairs provided for
training (this subset is called mini batch).
- Computes a subgradient @f$ \nabla_t @f$ of the function @f$ E_t(w) =
\frac{1}{2}\|w\|^2 + \frac{1}{k} \sum_{(x,y) \in A_t} \ell(w;(x,y))
@f$ (this is the SVM objective function restricted to the
minibatch).
- Compute an intermediate weight vector @f$ w_{t+1/2} @f$ by doing a
step @f$ w_{t+1/2} = w_t - \alpha_t \nabla_t @f$ with learning rate
@f$ \alpha_t = 1/(\eta t) @f$ along the subgradient. Note that the
learning rate is inversely proportional to the iteration number.
- Back projects the weight vector @f$ w_{t+1/2} @f$ on the
hypersphere of radius @f$ \sqrt{\lambda} @f$ to obtain the next
model estimate @f$ w_{t+1} @f$:
@f[
w_t = \min\{1, \sqrt{\lambda}/\|w\|\} w_{t+1/2}.
@f]
The hypersphere is guaranteed to contain the optimal weight vector
@f$ w^* @f$.
VLFeat implementation fixes to one the size of the mini batches @f$ k
@f$.
<!-- ------------------------------------------------------------ --->
@subsection svm-pegasos-permutation Permutation
<!-- ------------------------------------------------------------ --->
VLFeat PEGASOS can use a user-defined permutation to decide the order
in which data points are visited (instead of using random
sampling). By specifying a permutation the algorithm is guaranteed to
visit each data point exactly once in each loop. The permutation needs
not to be bijective. This can be used to visit certain data samples
more or less often than others, implicitly reweighting their relative
importance in the SVM objective function. This can be used to balance
the data.
<!-- ------------------------------------------------------------ --->
@subsection svm-pegasos-kernels Non-linear kernels
<!-- ------------------------------------------------------------ --->
PEGASOS can be extended to non-linear kernels, but the algorithm is
not particularly efficient in this setting [1]. When possible, it may
be preferable to work with explicit feature maps.
Let @f$ k(x,y) @f$ be a positive definite kernel. A <em>feature
map</em> is a function @f$ \Psi(x) @f$ such that @f$ k(x,y) = \langle
\Psi(x), \Psi(y) \rangle @f$. Using this representation the non-linear
SVM learning objective function writes:
@f[
\min_{w} \frac{\lambda}{2} \|w\|^2 + \frac{1}{m} \sum_{i=1}^n
\ell(w; (\Psi(x)_i,y_i)).
@f]
Thus the only difference with the linear case is that the feature @f$
\Psi(x) @f$ is used in place of the data @f$ x @f$.
@f$ \Psi(x) @f$ can be learned off-line, for instance by using the
incomplete Cholesky decomposition @f$ V^\top V @f$ of the Gram matrix
@f$ K = [k(x_i,x_j)] @f$ (in this case @f$ \Psi(x_i) @f$ is the
<em>i</em>-th columns of <em>V</em>). Alternatively, for additive
kernels (e.g. intersection, Chi2) the explicit feature map computed by
@ref homkermap.h can be used.
For additive kernels it is also possible to perform the feature
expansion online inside the solver, setting the specific feature map
via ::vl_svmdataset_set_map. This is particular useful to keep the
size of the training data small, when the number of the samples is big
or the memory is limited.
*/
#include "svm.h"
#include "mathop.h"
#include <string.h>
struct VlSvm_ {
VlSvmSolverType solver ; /**< SVM solver type. */
vl_size dimension ; /**< Model dimension. */
double * model ; /**< Model ($\bw$ vector). */
double bias ; /**< Bias. */
double biasMultiplier ; /**< Bias feature multiplier. */
/* valid during a run */
double lambda ; /**< Regularizer multiplier. */
void const * data ;
vl_size numData ;
double const * labels ; /**< Data labels. */
double const * weights ; /**< Data weights. */
VlSvmDataset * ownDataset ; /**< Optional owned dataset. */
VlSvmDiagnosticFunction diagnosticFn ;
void * diagnosticFnData ;
vl_size diagnosticFrequency ; /**< Frequency of diagnostic. */
VlSvmLossFunction lossFn ;
VlSvmLossFunction conjugateLossFn ;
VlSvmLossFunction lossDerivativeFn ;
VlSvmDcaUpdateFunction dcaUpdateFn ;
VlSvmInnerProductFunction innerProductFn ;
VlSvmAccumulateFunction accumulateFn ;
vl_size iteration ; /**< Current iterations number. */
vl_size maxNumIterations ; /**< Maximum number of iterations. */
double epsilon ; /**< Stopping threshold. */
/* Book keeping */
VlSvmStatistics statistics ; /**< Statistcs. */
double * scores ;
/* SGD specific */
double biasLearningRate ; /**< Bias learning rate. */
/* SDCA specific */
double * alpha ; /**< Dual variables. */
} ;
/* ---------------------------------------------------------------- */
/** @brief Create a new object with plain data.
** @param type type of SMV solver.
** @param data a pointer to a matrix of data.
** @param dimension dimension of the SVM model.
** @param numData number of training samples.
** @param labels training labels.
** @param lambda regularizer parameter.
** @return the new object.
**
** @a data has one column per sample, in @c double format.
** More advanced inputs can be used with ::vl_svm_new_with_dataset
** and ::vl_svm_new_with_abstract_data.
**
** @sa ::vl_svm_delete
**/
VlSvm *
vl_svm_new (VlSvmSolverType type,
double const * data,
vl_size dimension,
vl_size numData,
double const * labels,
double lambda)
{
VlSvmDataset * dataset = vl_svmdataset_new(VL_TYPE_DOUBLE, (void*)data, dimension, numData) ;
VlSvm * self = vl_svm_new_with_dataset (type, dataset, labels, lambda) ;
self->ownDataset = dataset ;
return self ;
}
/** @brief Create a new object with a dataset.
** @param solver type of SMV solver.
** @param dataset SVM dataset object
** @param labels training samples labels.
** @param lambda regularizer parameter.
** @return the new object.
** @sa ::vl_svm_delete
**/
VlSvm *
vl_svm_new_with_dataset (VlSvmSolverType solver,
VlSvmDataset * dataset,
double const * labels,
double lambda)
{
VlSvm * self = vl_svm_new_with_abstract_data (solver,
dataset,
vl_svmdataset_get_dimension(dataset),
vl_svmdataset_get_num_data(dataset),
labels,
lambda) ;
vl_svm_set_data_functions (self,
vl_svmdataset_get_inner_product_function(dataset),
vl_svmdataset_get_accumulate_function(dataset)) ;
return self ;
}
/** @brief Create a new object with abstract data.
** @param solver type of SMV solver.
** @param data pointer to the data.
** @param dimension dimension of the SVM model.
** @param numData num training samples.
** @param labels training samples labels.
** @param lambda regularizer parameter.
** @return the new object.
**
** After calling this function, ::vl_svm_set_data_functions *must*
** be used to setup suitable callbacks for the inner product
** and accumulation operations (@see svm-data-abstraction).
**
** @sa ::vl_svm_delete
**/
VlSvm *
vl_svm_new_with_abstract_data (VlSvmSolverType solver,
void * data,
vl_size dimension,
vl_size numData,
double const * labels,
double lambda)
{
VlSvm * self = vl_calloc(1,sizeof(VlSvm)) ;
assert(dimension >= 1) ;
assert(numData >= 1) ;
assert(labels) ;
self->solver = solver ;
self->dimension = dimension ;
self->model = 0 ;
self->bias = 0 ;
self->biasMultiplier = 1.0 ;
self->lambda = lambda ;
self->data = data ;
self->numData = numData ;
self->labels = labels ;
self->diagnosticFrequency = numData ;
self->diagnosticFn = 0 ;
self->diagnosticFnData = 0 ;
self->lossFn = vl_svm_hinge_loss ;
self->conjugateLossFn = vl_svm_hinge_conjugate_loss ;
self->lossDerivativeFn = vl_svm_hinge_loss_derivative ;
self->dcaUpdateFn = vl_svm_hinge_dca_update ;
self->innerProductFn = 0 ;
self->accumulateFn = 0 ;
self->iteration = 0 ;
self->maxNumIterations = VL_MAX((double)numData, vl_ceil_f(10.0 / lambda)) ;
self->epsilon = 1e-2 ;
/* SGD */
self->biasLearningRate = 0.01 ;
/* SDCA */
self->alpha = 0 ;
/* allocations */
self->model = vl_calloc(dimension, sizeof(double)) ;
if (self->model == NULL) goto err_alloc ;
if (self->solver == VlSvmSolverSdca) {
self->alpha = vl_calloc(self->numData, sizeof(double)) ;
if (self->alpha == NULL) goto err_alloc ;
}
self->scores = vl_calloc(numData, sizeof(double)) ;
if (self->scores == NULL) goto err_alloc ;
return self ;
err_alloc:
if (self->scores) {
vl_free (self->scores) ;
self->scores = 0 ;
}
if (self->model) {
vl_free (self->model) ;
self->model = 0 ;
}
if (self->alpha) {
vl_free (self->alpha) ;
self->alpha = 0 ;
}
return 0 ;
}
/** @brief Delete object.
** @param self object.
** @sa ::vl_svm_new
**/
void
vl_svm_delete (VlSvm * self)
{
if (self->model) {
vl_free (self->model) ;
self->model = 0 ;
}
if (self->alpha) {
vl_free (self->alpha) ;
self->alpha = 0 ;
}
if (self->ownDataset) {
vl_svmdataset_delete(self->ownDataset) ;
self->ownDataset = 0 ;
}
vl_free (self) ;
}
/* ---------------------------------------------------------------- */
/* Setters and getters */
/* ---------------------------------------------------------------- */
/** @brief Set the convergence threshold
** @param self object
** @param epsilon threshold (non-negative).
**/
void vl_svm_set_epsilon (VlSvm *self, double epsilon)
{
assert(self) ;
assert(epsilon >= 0) ;
self->epsilon = epsilon ;
}
/** @brief Get the convergence threshold
** @param self object
** @return epsilon threshold.
**/
double vl_svm_get_epsilon (VlSvm const *self)
{
assert(self) ;
return self->epsilon ;
}
/** @brief Set the bias learning rate
** @param self object
** @param rate bias learning rate (positive).
**
** This parameter applies only to the SGD solver.
**/
void vl_svm_set_bias_learning_rate (VlSvm *self, double rate)
{
assert(self) ;
assert(rate > 0) ;
self->biasLearningRate = rate ;
}
/** @brief Get the bias leraning rate.
** @param self object
** @return bias learning rate.
**/
double vl_svm_get_bias_learning_rate (VlSvm const *self)
{
assert(self) ;
return self->biasLearningRate ;
}
/** @brief Set the bias multiplier.
** @param self object
** @param b bias multiplier.
**
** The *bias multiplier* is the value of the constant feature
** appended to the data vectors to implement the bias (@ref svm-bias).
**/
void vl_svm_set_bias_multiplier (VlSvm * self, double b)
{
assert(self) ;
assert(b >= 0) ;
self->biasMultiplier = b ;
}
/** @brief Get the bias multiplier.
** @param self object.
** @return bias multiplier.
**/
double vl_svm_get_bias_multiplier (VlSvm const * self)
{
assert(self) ;
return self->biasMultiplier ;
}
/** @brief Set the current iteratio number.
** @param self object.
** @param n iteration number.
**
** If called before training,
** this can be used with SGD for a warm start, as the net
** effect is to slow down the learning rate.
**/
void vl_svm_set_iteration_number (VlSvm *self, vl_uindex n)
{
assert(self) ;
self->iteration = n ;
}
/** @brief Get the current iteration number.
** @param self object.
** @return current iteration number.
**/
vl_size vl_svm_get_iteration_number (VlSvm const *self)
{
assert(self) ;
return self->iteration ;
}
/** @brief Set the maximum number of iterations.
** @param self object.
** @param n maximum number of iterations.
**/
void vl_svm_set_max_num_iterations (VlSvm *self, vl_size n)
{
assert(self) ;
self->maxNumIterations = n ;
}
/** @brief Get the maximum number of iterations.
** @param self object.
** @return maximum number of iterations.
**/
vl_size vl_svm_get_max_num_iterations (VlSvm const *self)
{
assert(self) ;
return self->maxNumIterations ;
}
/** @brief Set the diagnostic frequency.
** @param self object.
** @param f diagnostic frequency (@c >= 1).
**
** A diagnostic round (to test for convergence and to printout
** information) is performed every @a f iterations.
**/
void vl_svm_set_diagnostic_frequency (VlSvm *self, vl_size f)
{
assert(self) ;
assert(f > 0) ;
self->diagnosticFrequency = f ;
}
/** @brief Get the diagnostic frequency.
** @param self object.
** @return diagnostic frequency.
**/
vl_size vl_svm_get_diagnostic_frequency (VlSvm const *self)
{
assert(self) ;
return self->diagnosticFrequency ;
}
/** @brief Get the SVM solver type.
** @param self object.
** @return SVM solver type.
**/
VlSvmSolverType vl_svm_get_solver (VlSvm const * self)
{
assert(self) ;
return self->solver ;
}
/** @brief Set the regularizer parameter lambda.
** @param self object.
** @param lambda regularizer parameter.
**
** Note that @a lambda is usually set when calling a
** constructor for ::VlSvm as certain parameters, such
** as the maximum number of iterations, are tuned accordingly.
** This tuning is not performed when @a lambda is changed
** using this function.
**/
void vl_svm_set_lambda (VlSvm * self, double lambda)
{
assert(self) ;
assert(lambda >= 0) ;
self->lambda = lambda ;
}
/** @brief Get the regularizer parameter lambda.
** @param self object.
** @return diagnostic frequency.
**/
double vl_svm_get_lambda (VlSvm const * self)
{
assert(self) ;
return self->lambda ;
}
/** @brief Set the data weights.
** @param self object.
** @param weights data weights.
**
** @a weights must be an array of non-negative weights.
** The loss of each data point is multiplied by the corresponding
** weight.
**
** Set @a weights to @c NULL to weight the data uniformly by 1 (default).
**
** Note that the @a weights array is *not* copied and must be valid
** througout the object lifetime (unless it is replaced).
**/
void vl_svm_set_weights (VlSvm * self, double const *weights)
{
assert(self) ;
self->weights = weights ;
}
/** @brief Get the data weights.
** @param self object.
** @return data weights.
**/
double const *vl_svm_get_weights (VlSvm const * self)
{
assert(self) ;
return self->weights ;
}
/* ---------------------------------------------------------------- */
/* Get data */
/* ---------------------------------------------------------------- */
/** @brief Get the model dimenison.
** @param self object.
** @return model dimension.
**
** This is the dimensionality of the weight vector $\bw$.
**/
vl_size vl_svm_get_dimension (VlSvm *self)
{
assert(self) ;
return self->dimension ;
}
/** @brief Get the number of data samples.
** @param self object.
** @return model number of data samples
**
** This is the dimensionality of the weight vector $\bw$.
**/
vl_size vl_svm_get_num_data (VlSvm *self)
{
assert(self) ;
return self->numData ;
}
/** @brief Get the SVM model.
** @param self object.
** @return model.
**
** This is the weight vector $\bw$.
**/
double const * vl_svm_get_model (VlSvm const *self)
{
assert(self) ;
return self->model ;
}
/** @brief Set the SVM model.
** @param self object.
** @param model model.
**
** The function *copies* the content of the vector @a model to the
** internal model buffer. This operation can be used for warm start
** with the SGD algorithm, but has undefined effect with the SDCA algorithm.
**/
void vl_svm_set_model (VlSvm *self, double const *model)
{
assert(self) ;
assert(model) ;
memcpy(self->model, model, sizeof(double) * vl_svm_get_dimension(self)) ;
}
/** @brief Set the SVM bias.
** @param self object.
** @param b bias.
**
** The function set the internal representation of the SVM bias to
** be equal to @a b (the bias multiplier
** is applied). The same remark
** that applies to ::vl_svm_set_model applies here too.
**/
void vl_svm_set_bias (VlSvm *self, double b)
{
assert(self);
if (self->biasMultiplier) {
self->bias = b / self->biasMultiplier ;
}
}
/** @brief Get the value of the bias.
** @param self object.
** @return bias $b$.
**
** The value of the bias returned already include the effect of
** bias mutliplier.
**/
double vl_svm_get_bias (VlSvm const *self)
{
assert(self) ;
return self->bias * self->biasMultiplier ;
}
/** @brief Get the solver statistics.
** @param self object.
** @return statistics.
**/
VlSvmStatistics const * vl_svm_get_statistics (VlSvm const *self)
{
assert(self) ;
return &self->statistics ;
}
/** @brief Get the scores of the data points.
** @param self object.
** @return vector of scores.
**
** After training or during the diagnostic callback,
** this function can be used to retrieve the scores
** of the points, i.e. $\langle \bx_i, \bw \rangle + b$.
**/
double const * vl_svm_get_scores (VlSvm const *self)
{
return self->scores ;
}
/* ---------------------------------------------------------------- */
/* Callbacks */
/* ---------------------------------------------------------------- */
/** @typedef VlSvmDiagnosticFunction
** @brief SVM diagnostic function pointer.
** @param svm is an instance of ::VlSvm .
**/
/** @typedef VlSvmAccumulateFunction
** @brief Pointer to a function that adds to @a model the data point at
** position @a element multiplied by the constant @a multiplier.
**/
/** @typedef VlSvmInnerProductFunction
** @brief Pointer to a function that defines the inner product
** between the data point at position @a element and the SVM model
**/
/** @brief Set the diagnostic function callback
** @param self object.
** @param f diagnostic function pointer.
** @param data pointer to data used by the diagnostic function.
**/
void
vl_svm_set_diagnostic_function (VlSvm *self, VlSvmDiagnosticFunction f, void *data) {
self->diagnosticFn = f ;
self->diagnosticFnData = data ;
}
/** @brief Set the data functions.
** @param self object.
** @param inner inner product function.
** @param acc accumulate function.
**
** See @ref svm-data-abstraction.
**/
void vl_svm_set_data_functions (VlSvm *self, VlSvmInnerProductFunction inner, VlSvmAccumulateFunction acc)
{
assert(self) ;
assert(inner) ;
assert(acc) ;
self->innerProductFn = inner ;
self->accumulateFn = acc ;
}
/** @brief Set the loss function callback.
** @param self object.
** @param f loss function callback.
**
** Note that setting up a loss requires specifying more than just one
** callback. See @ref svm-loss-functions for details.
**/
void vl_svm_set_loss_function (VlSvm *self, VlSvmLossFunction f)
{
assert(self) ;
self->lossFn = f ;
}
/** @brief Set the loss derivative function callback.
** @copydetails vl_svm_set_loss_function.
**/
void vl_svm_set_loss_derivative_function (VlSvm *self, VlSvmLossFunction f)
{
assert(self) ;
self->lossDerivativeFn = f ;
}
/** @brief Set the conjugate loss function callback.
** @copydetails vl_svm_set_loss_function.
**/
void vl_svm_set_conjugate_loss_function (VlSvm *self, VlSvmLossFunction f)
{
assert(self) ;
self->conjugateLossFn = f ;
}
/** @brief Set the DCA update function callback.
** @copydetails vl_svm_set_loss_function.
**/
void vl_svm_set_dca_update_function (VlSvm *self, VlSvmDcaUpdateFunction f)
{
assert(self) ;
self->dcaUpdateFn = f ;
}
/** @brief Set the loss function to one of the default types.
** @param self object.
** @param loss type of loss function.
** @sa @ref svm-loss-functions.
**/
void
vl_svm_set_loss (VlSvm *self, VlSvmLossType loss)
{
#define SETLOSS(x,y) \
case VlSvmLoss ## x: \
vl_svm_set_loss_function(self, vl_svm_ ## y ## _loss) ; \
vl_svm_set_loss_derivative_function(self, vl_svm_ ## y ## _loss_derivative) ; \
vl_svm_set_conjugate_loss_function(self, vl_svm_ ## y ## _conjugate_loss) ; \
vl_svm_set_dca_update_function(self, vl_svm_ ## y ## _dca_update) ; \
break;
switch (loss) {
SETLOSS(Hinge, hinge) ;
SETLOSS(Hinge2, hinge2) ;
SETLOSS(L1, l1) ;
SETLOSS(L2, l2) ;
SETLOSS(Logistic, logistic) ;
default:
assert(0) ;
}
}
/* ---------------------------------------------------------------- */
/* Pre-defined losses */
/* ---------------------------------------------------------------- */
/** @typedef VlSvmLossFunction
** @brief SVM loss function pointer.
** @param inner inner product between sample and model $\bw^\top \bx$.
** @param label sample label $y$.
** @return value of the loss.
**
** The interface is the same for a loss function, its derivative,
** or the conjugate loss.
**
** @sa @ref svm-fundamentals
**/
/** @typedef VlSvmDcaUpdateFunction
** @brief SVM SDCA update function pointer.
** @param alpha current value of the dual variable.
** @param inner inner product $\bw^\top \bx$ of the sample with the SVM model.
** @param norm2 normalization factor $\|\bx\|^2/\lambda n$.
** @param label label $y$ of the sample.
** @return incremental update $\Delta\alpha$ of the dual variable.
**
** @sa @ref svm-sdca
**/
/** @brief SVM hinge loss
** @copydetails VlSvmLossFunction */
double
vl_svm_hinge_loss (double inner, double label)
{
return VL_MAX(1 - label * inner, 0.0);
}
/** @brief SVM hinge loss derivative
** @copydetails VlSvmLossFunction */
double
vl_svm_hinge_loss_derivative (double inner, double label)
{
if (label * inner < 1.0) {
return - label ;
} else {
return 0.0 ;
}
}
/** @brief SVM hinge loss conjugate
** @param u dual variable.
** @param label label value.
** @return conjugate loss.
**/
double
vl_svm_hinge_conjugate_loss (double u, double label) {
double z = label * u ;
if (-1 <= z && z <= 0) {
return label * u ;
} else {
return VL_INFINITY_D ;
}
}
/** @brief SVM hinge loss DCA update
** @copydetails VlSvmDcaUpdateFunction */
double
vl_svm_hinge_dca_update (double alpha, double inner, double norm2, double label) {
double palpha = (label - inner) / norm2 + alpha ;
return label * VL_MAX(0, VL_MIN(1, label * palpha)) - alpha ;
}
/** @brief SVM square hinge loss
** @copydetails VlSvmLossFunction */
double
vl_svm_hinge2_loss (double inner,double label)
{
double z = VL_MAX(1 - label * inner, 0.0) ;
return z*z ;
}
/** @brief SVM square hinge loss derivative
** @copydetails VlSvmLossFunction */
double
vl_svm_hinge2_loss_derivative (double inner, double label)
{
if (label * inner < 1.0) {
return 2 * (inner - label) ;
} else {
return 0 ;
}
}
/** @brief SVM square hinge loss conjugate
** @copydetails vl_svm_hinge_conjugate_loss */
double
vl_svm_hinge2_conjugate_loss (double u, double label) {
if (label * u <= 0) {
return (label + u/4) * u ;
} else {
return VL_INFINITY_D ;
}
}
/** @brief SVM square hinge loss DCA update
** @copydetails VlSvmDcaUpdateFunction */
double
vl_svm_hinge2_dca_update (double alpha, double inner, double norm2, double label) {
double palpha = (label - inner - 0.5*alpha) / (norm2 + 0.5) + alpha ;
return label * VL_MAX(0, label * palpha) - alpha ;
}
/** @brief SVM l1 loss
** @copydetails VlSvmLossFunction */
double
vl_svm_l1_loss (double inner,double label)
{
return vl_abs_d(label - inner) ;
}
/** @brief SVM l1 loss derivative
** @copydetails VlSvmLossFunction */
double
vl_svm_l1_loss_derivative (double inner, double label)
{
if (label > inner) {
return - 1.0 ;
} else {
return + 1.0 ;
}
}
/** @brief SVM l1 loss conjugate
** @copydetails vl_svm_hinge_conjugate_loss */
double
vl_svm_l1_conjugate_loss (double u, double label) {
if (vl_abs_d(u) <= 1) {
return label*u ;
} else {
return VL_INFINITY_D ;
}
}
/** @brief SVM l1 loss DCA update
** @copydetails VlSvmDcaUpdateFunction */
double
vl_svm_l1_dca_update (double alpha, double inner, double norm2, double label) {
if (vl_abs_d(alpha) <= 1) {
double palpha = (label - inner) / norm2 + alpha ;
return VL_MAX(-1.0, VL_MIN(1.0, palpha)) - alpha ;
} else {
return VL_INFINITY_D ;
}
}
/** @brief SVM l2 loss
** @copydetails VlSvmLossFunction */
double
vl_svm_l2_loss (double inner,double label)
{
double z = label - inner ;
return z*z ;
}
/** @brief SVM l2 loss derivative
** @copydetails VlSvmLossFunction */
double
vl_svm_l2_loss_derivative (double inner, double label)
{
return - 2 * (label - inner) ;
}
/** @brief SVM l2 loss conjugate
** @copydetails vl_svm_hinge_conjugate_loss */
double
vl_svm_l2_conjugate_loss (double u, double label) {
return (label + u/4) * u ;
}
/** @brief SVM l2 loss DCA update
** @copydetails VlSvmDcaUpdateFunction */
double
vl_svm_l2_dca_update (double alpha, double inner, double norm2, double label) {
return (label - inner - 0.5*alpha) / (norm2 + 0.5) ;
}
/** @brief SVM l2 loss
** @copydetails VlSvmLossFunction */
double
vl_svm_logistic_loss (double inner,double label)
{
double z = label * inner ;
if (z >= 0) {
return log(1.0 + exp(-z)) ;
} else {
return -z + log(exp(z) + 1.0) ;
}
}
/** @brief SVM l2 loss derivative
** @copydetails VlSvmLossFunction */
double
vl_svm_logistic_loss_derivative (double inner, double label)
{
double z = label * inner ;
double t = 1 / (1 + exp(-z)) ; /* this is stable for z << 0 too */
return label * (t - 1) ; /* = -label exp(-z) / (1 + exp(-z)) */
}
VL_INLINE double xlogx(double x)
{
if (x <= 1e-10) return 0 ;
return x*log(x) ;
}
/** @brief SVM l2 loss conjugate
** @copydetails vl_svm_hinge_conjugate_loss */
double
vl_svm_logistic_conjugate_loss (double u, double label) {
double z = label * u ;
if (-1 <= z && z <= 0) {
return xlogx(-z) + xlogx(1+z) ;
} else {
return VL_INFINITY_D ;
}
}
/** @brief SVM l2 loss DCA update
** @copydetails VlSvmDcaUpdateFunction */
double
vl_svm_logistic_dca_update (double alpha, double inner, double norm2, double label) {
/*
The goal is to solve the problem
min_delta A/2 delta^2 + B delta + l*(-alpha - delta|y), -1 <= - y (alpha+delta) <= 0
where A = norm2, B = inner, and y = label. To simplify the notation, we set
f(beta) = beta * log(beta) + (1 - beta) * log(1 - beta)
where beta = y(alpha + delta) such that
l*(-alpha - delta |y) = f(beta).
Hence 0 <= beta <= 1, delta = + y beta - alpha. Substituting
min_beta A/2 beta^2 + y (B - A alpha) beta + f(beta) + const
The Newton step is then given by
beta = beta - (A beta + y(B - A alpha) + df) / (A + ddf).
However, the function is singluar for beta=0 and beta=1 (infinite
first and second order derivatives). Since the function is monotonic
(second derivarive always strictly greater than zero) and smooth,
we canuse bisection to find the zero crossing of the first derivative.
Once one is sufficiently close to the optimum, a one or two Newton
steps are sufficien to land on it with excellent accuracy.
*/
double df, ddf, der, dder ;
vl_index t ;
/* bisection */
double beta1 = 0 ;
double beta2 = 1 ;
double beta = 0.5 ;
for (t = 0 ; t < 5 ; ++t) {
df = log(beta) - log(1-beta) ;
der = norm2 * beta + label * (inner - norm2*alpha) + df ;
if (der >= 0) {
beta2 = beta ;
} else {
beta1 = beta ;
}
beta = 0.5 * (beta1 + beta2) ;
}
#if 1
/* a final Newton step, but not too close to the singularities */
for (t = 0 ; (t < 2) & (beta > VL_EPSILON_D) & (beta < 1-VL_EPSILON_D) ; ++t) {
df = log(beta) - log(1-beta) ;
ddf = 1 / (beta * (1-beta)) ;
der = norm2 * beta + label * (inner - norm2*alpha) + df ;
dder = norm2 + ddf ;
beta -= der / dder ;
beta = VL_MAX(0, VL_MIN(1, beta)) ;
}
#endif
return label * beta - alpha ;
}
/* ---------------------------------------------------------------- */
/** @internal @brief Update SVM statistics
** @param self object.
**/
void _vl_svm_update_statistics (VlSvm *self)
{
vl_size i, k ;
double inner, p ;
memset(&self->statistics, 0, sizeof(VlSvmStatistics)) ;
self->statistics.regularizer = self->bias * self->bias ;
for (i = 0; i < self->dimension; i++) {
self->statistics.regularizer += self->model[i] * self->model[i] ;
}
self->statistics.regularizer *= self->lambda * 0.5 ;
for (k = 0; k < self->numData ; k++) {
p = (self->weights) ? self->weights[k] : 1.0 ;
if (p <= 0) continue ;
inner = self->innerProductFn(self->data, k, self->model) ;
inner += self->bias * self->biasMultiplier ;
self->scores[k] = inner ;
self->statistics.loss += p * self->lossFn(inner, self->labels[k]) ;
if (self->solver == VlSvmSolverSdca) {
self->statistics.dualLoss -= p * self->conjugateLossFn(- self->alpha[k] / p, self->labels[k]) ;
}
}
self->statistics.loss /= self->numData ;
self->statistics.objective = self->statistics.regularizer + self->statistics.loss ;
if (self->solver == VlSvmSolverSdca) {
self->statistics.dualLoss /= self->numData ;
self->statistics.dualObjective = - self->statistics.regularizer + self->statistics.dualLoss ;
self->statistics.dualityGap = self->statistics.objective - self->statistics.dualObjective ;
}
}
/* ---------------------------------------------------------------- */
/* Evaluate rather than solve */
/* ---------------------------------------------------------------- */
void _vl_svm_evaluate (VlSvm *self)
{
double startTime = vl_get_cpu_time () ;
_vl_svm_update_statistics (self) ;
self->statistics.elapsedTime = vl_get_cpu_time() - startTime ;
self->statistics.iteration = 0 ;
self->statistics.epoch = 0 ;
self->statistics.status = VlSvmStatusConverged ;
if (self->diagnosticFn) {
self->diagnosticFn(self, self->diagnosticFnData) ;
}
}
/* ---------------------------------------------------------------- */
/* Stochastic Dual Coordinate Ascent Solver */
/* ---------------------------------------------------------------- */
void _vl_svm_sdca_train (VlSvm *self)
{
double * norm2 ;
vl_index * permutation ;
vl_uindex i, t ;
double inner, delta, multiplier, p ;
double startTime = vl_get_cpu_time () ;
VlRand * rand = vl_get_rand() ;
norm2 = (double*) vl_calloc(self->numData, sizeof(double));
permutation = vl_calloc(self->numData, sizeof(vl_index)) ;
{
double * buffer = vl_calloc(self->dimension, sizeof(double)) ;
for (i = 0 ; i < (unsigned)self->numData; i++) {
double n2 ;
permutation [i] = i ;
memset(buffer, 0, self->dimension * sizeof(double)) ;
self->accumulateFn (self->data, i, buffer, 1) ;
n2 = self->innerProductFn (self->data, i, buffer) ;
n2 += self->biasMultiplier * self->biasMultiplier ;
norm2[i] = n2 / (self->lambda * self->numData) ;
}
vl_free(buffer) ;
}
for (t = 0 ; 1 ; ++t) {
if (t % self->numData == 0) {
/* once a new epoch is reached (all data have been visited),
change permutation */
vl_rand_permute_indexes(rand, permutation, self->numData) ;
}
/* pick a sample and compute update */
i = permutation[t % self->numData] ;
p = (self->weights) ? self->weights[i] : 1.0 ;
if (p > 0) {
inner = self->innerProductFn(self->data, i, self->model) ;
inner += self->bias * self->biasMultiplier ;
delta = p * self->dcaUpdateFn(self->alpha[i] / p, inner, p * norm2[i], self->labels[i]) ;
} else {
delta = 0 ;
}
/* apply update */
if (delta != 0) {
self->alpha[i] += delta ;
multiplier = delta / (self->numData * self->lambda) ;
self->accumulateFn(self->data,i,self->model,multiplier) ;
self->bias += self->biasMultiplier * multiplier;
}
/* call diagnostic occasionally */
if ((t + 1) % self->diagnosticFrequency == 0 || t + 1 == self->maxNumIterations) {
_vl_svm_update_statistics (self) ;
self->statistics.elapsedTime = vl_get_cpu_time() - startTime ;
self->statistics.iteration = t ;
self->statistics.epoch = t / self->numData ;
self->statistics.status = VlSvmStatusTraining ;
if (self->statistics.dualityGap < self->epsilon) {
self->statistics.status = VlSvmStatusConverged ;
}
else if (t + 1 == self->maxNumIterations) {
self->statistics.status = VlSvmStatusMaxNumIterationsReached ;
}
if (self->diagnosticFn) {
self->diagnosticFn(self, self->diagnosticFnData) ;
}
if (self->statistics.status != VlSvmStatusTraining) {
break ;
}
}
} /* next iteration */
vl_free (norm2) ;
vl_free (permutation) ;
}
/* ---------------------------------------------------------------- */
/* Stochastic Gradient Descent Solver */
/* ---------------------------------------------------------------- */
void _vl_svm_sgd_train (VlSvm *self)
{
vl_index * permutation ;
double * scores ;
double * previousScores ;
vl_uindex i, t, k ;
double inner, gradient, rate, biasRate, p ;
double factor = 1.0 ;
double biasFactor = 1.0 ; /* to allow slower bias learning rate */
vl_index t0 = VL_MAX(2, vl_ceil_d(1.0 / self->lambda)) ;
//t0=2 ;
double startTime = vl_get_cpu_time () ;
VlRand * rand = vl_get_rand() ;
permutation = vl_calloc(self->numData, sizeof(vl_index)) ;
scores = vl_calloc(self->numData * 2, sizeof(double)) ;
previousScores = scores + self->numData ;
for (i = 0 ; i < (unsigned)self->numData; i++) {
permutation [i] = i ;
previousScores [i] = - VL_INFINITY_D ;
}
/*
We store the w vector as the product fw (factor * model).
We also use a different factor for the bias: biasFactor * biasMultiplier
to enable a slower learning rate for the bias.
Given this representation, it is easy to carry the two key operations:
* Inner product: <fw,x> = f <w,x>
* Model update: fp wp = fw - rate * lambda * w - rate * g
= f(1 - rate * lambda) w - rate * g
Thus the update equations are:
fp = f(1 - rate * lambda), and
wp = w + rate / fp * g ;
* Realization of the scaling factor. Before the statistics function
is called, or training finishes, the factor (and biasFactor)
are explicitly applied to the model and the bias.
*/
for (t = 0 ; 1 ; ++t) {
if (t % self->numData == 0) {
/* once a new epoch is reached (all data have been visited),
change permutation */
vl_rand_permute_indexes(rand, permutation, self->numData) ;
}
/* pick a sample and compute update */
i = permutation[t % self->numData] ;
p = (self->weights) ? self->weights[i] : 1.0 ;
p = VL_MAX(0.0, p) ; /* we assume non-negative weights, so this is just for robustness */
inner = factor * self->innerProductFn(self->data, i, self->model) ;
inner += biasFactor * (self->biasMultiplier * self->bias) ;
gradient = p * self->lossDerivativeFn(inner, self->labels[i]) ;
previousScores[i] = scores[i] ;
scores[i] = inner ;
/* apply update */
rate = 1.0 / (self->lambda * (t + t0)) ;
biasRate = rate * self->biasLearningRate ;
factor *= (1.0 - self->lambda * rate) ;
biasFactor *= (1.0 - self->lambda * biasRate) ;
/* debug: realize the scaling factor all the times */
/*
for (k = 0 ; k < self->dimension ; ++k) self->model[k] *= factor ;
self->bias *= biasFactor;
factor = 1.0 ;
biasFactor = 1.0 ;
*/
if (gradient != 0) {
self->accumulateFn(self->data, i, self->model, - gradient * rate / factor) ;
self->bias += self->biasMultiplier * (- gradient * biasRate / biasFactor) ;
}
/* call diagnostic occasionally */
if ((t + 1) % self->diagnosticFrequency == 0 || t + 1 == self->maxNumIterations) {
/* realize factor before computing statistics or completing training */
for (k = 0 ; k < self->dimension ; ++k) self->model[k] *= factor ;
self->bias *= biasFactor;
factor = 1.0 ;
biasFactor = 1.0 ;
_vl_svm_update_statistics (self) ;
for (k = 0 ; k < self->numData ; ++k) {
double delta = scores[k] - previousScores[k] ;
self->statistics.scoresVariation += delta * delta ;
}
self->statistics.scoresVariation = sqrt(self->statistics.scoresVariation) / self->numData ;
self->statistics.elapsedTime = vl_get_cpu_time() - startTime ;
self->statistics.iteration = t ;
self->statistics.epoch = t / self->numData ;
self->statistics.status = VlSvmStatusTraining ;
if (self->statistics.scoresVariation < self->epsilon) {
self->statistics.status = VlSvmStatusConverged ;
}
else if (t + 1 == self->maxNumIterations) {
self->statistics.status = VlSvmStatusMaxNumIterationsReached ;
}
if (self->diagnosticFn) {
self->diagnosticFn(self, self->diagnosticFnData) ;
}
if (self->statistics.status != VlSvmStatusTraining) {
break ;
}
}
} /* next iteration */
vl_free (scores) ;
vl_free (permutation) ;
}
/* ---------------------------------------------------------------- */
/* Dispatcher */
/* ---------------------------------------------------------------- */
/** @brief Run the SVM solver
** @param self object.
**
** The data on which the SVM operates is passed upon the cration of
** the ::VlSvm object. This function runs a solver to learn a
** corresponding model. See @ref svm-starting.
**/
void vl_svm_train (VlSvm * self)
{
assert (self) ;
switch (self->solver) {
case VlSvmSolverSdca:
_vl_svm_sdca_train(self) ;
break ;
case VlSvmSolverSgd:
_vl_svm_sgd_train(self) ;
break ;
case VlSvmSolverNone:
_vl_svm_evaluate(self) ;
break ;
default:
assert(0) ;
}
}
|