1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
|
// Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: Johannes L. Schoenberger (jsch at inf.ethz.ch)
#include "mvs/meshing.h"
#include <fstream>
#include <unordered_map>
#include <vector>
#ifdef CGAL_ENABLED
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#endif // CGAL_ENABLED
#include "PoissonRecon/PoissonRecon.h"
#include "PoissonRecon/SurfaceTrimmer.h"
#include "base/graph_cut.h"
#include "base/reconstruction.h"
#include "util/endian.h"
#include "util/logging.h"
#include "util/misc.h"
#include "util/option_manager.h"
#include "util/ply.h"
#include "util/random.h"
#include "util/threading.h"
#include "util/timer.h"
#ifdef CGAL_ENABLED
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_3<K, CGAL::Fast_location> Delaunay;
namespace std {
template <>
struct hash<Delaunay::Vertex_handle> {
std::size_t operator()(const Delaunay::Vertex_handle& handle) const {
return reinterpret_cast<std::size_t>(&*handle);
}
};
template <>
struct hash<const Delaunay::Vertex_handle> {
std::size_t operator()(const Delaunay::Vertex_handle& handle) const {
return reinterpret_cast<std::size_t>(&*handle);
}
};
template <>
struct hash<Delaunay::Cell_handle> {
std::size_t operator()(const Delaunay::Cell_handle& handle) const {
return reinterpret_cast<std::size_t>(&*handle);
}
};
template <>
struct hash<const Delaunay::Cell_handle> {
std::size_t operator()(const Delaunay::Cell_handle& handle) const {
return reinterpret_cast<std::size_t>(&*handle);
}
};
} // namespace std
#endif // CGAL_ENABLED
namespace colmap {
namespace mvs {
bool PoissonMeshingOptions::Check() const {
CHECK_OPTION_GE(point_weight, 0);
CHECK_OPTION_GT(depth, 0);
CHECK_OPTION_GE(color, 0);
CHECK_OPTION_GE(trim, 0);
CHECK_OPTION_GE(num_threads, -1);
CHECK_OPTION_NE(num_threads, 0);
return true;
}
bool DelaunayMeshingOptions::Check() const {
CHECK_OPTION_GE(max_proj_dist, 0);
CHECK_OPTION_GE(max_depth_dist, 0);
CHECK_OPTION_LE(max_depth_dist, 1);
CHECK_OPTION_GT(visibility_sigma, 0);
CHECK_OPTION_GT(distance_sigma_factor, 0);
CHECK_OPTION_GE(quality_regularization, 0);
CHECK_OPTION_GE(max_side_length_factor, 0);
CHECK_OPTION_GE(max_side_length_percentile, 0);
CHECK_OPTION_LE(max_side_length_percentile, 100);
CHECK_OPTION_GE(num_threads, -1);
CHECK_OPTION_NE(num_threads, 0);
return true;
}
bool PoissonMeshing(const PoissonMeshingOptions& options,
const std::string& input_path,
const std::string& output_path) {
CHECK(options.Check());
std::vector<std::string> args;
args.push_back("./binary");
args.push_back("--in");
args.push_back(input_path);
args.push_back("--out");
args.push_back(output_path);
args.push_back("--pointWeight");
args.push_back(std::to_string(options.point_weight));
args.push_back("--depth");
args.push_back(std::to_string(options.depth));
if (options.color > 0) {
args.push_back("--color");
args.push_back(std::to_string(options.color));
}
#ifdef OPENMP_ENABLED
if (options.num_threads > 0) {
args.push_back("--threads");
args.push_back(std::to_string(options.num_threads));
}
#endif // OPENMP_ENABLED
if (options.trim > 0) {
args.push_back("--density");
}
std::vector<const char*> args_cstr;
args_cstr.reserve(args.size());
for (const auto& arg : args) {
args_cstr.push_back(arg.c_str());
}
if (PoissonRecon(args_cstr.size(), const_cast<char**>(args_cstr.data())) !=
EXIT_SUCCESS) {
return false;
}
if (options.trim == 0) {
return true;
}
args.clear();
args_cstr.clear();
args.push_back("./binary");
args.push_back("--in");
args.push_back(output_path);
args.push_back("--out");
args.push_back(output_path);
args.push_back("--trim");
args.push_back(std::to_string(options.trim));
args_cstr.reserve(args.size());
for (const auto& arg : args) {
args_cstr.push_back(arg.c_str());
}
return SurfaceTrimmer(args_cstr.size(),
const_cast<char**>(args_cstr.data())) == EXIT_SUCCESS;
}
#ifdef CGAL_ENABLED
K::Point_3 EigenToCGAL(const Eigen::Vector3f& point) {
return K::Point_3(point.x(), point.y(), point.z());
}
Eigen::Vector3f CGALToEigen(const K::Point_3& point) {
return Eigen::Vector3f(point.x(), point.y(), point.z());
}
class DelaunayMeshingInput {
public:
struct Image {
camera_t camera_id = kInvalidCameraId;
Eigen::Matrix3x4f proj_matrix = Eigen::Matrix3x4f::Identity();
Eigen::Vector3f proj_center = Eigen::Vector3f::Zero();
std::vector<size_t> point_idxs;
};
struct Point {
Eigen::Vector3f position = Eigen::Vector3f::Zero();
uint32_t num_visible_images = 0;
};
EIGEN_STL_UMAP(camera_t, Camera) cameras;
std::vector<Image> images;
std::vector<Point> points;
void ReadSparseReconstruction(const std::string& path) {
Reconstruction reconstruction;
reconstruction.Read(path);
CopyFromSparseReconstruction(reconstruction);
}
void CopyFromSparseReconstruction(const Reconstruction& reconstruction) {
images.reserve(reconstruction.NumRegImages());
points.reserve(reconstruction.NumPoints3D());
cameras = reconstruction.Cameras();
std::unordered_map<point3D_t, size_t> point_id_to_idx;
point_id_to_idx.reserve(reconstruction.NumPoints3D());
for (const auto& point3D : reconstruction.Points3D()) {
point_id_to_idx.emplace(point3D.first, points.size());
DelaunayMeshingInput::Point input_point;
input_point.position = point3D.second.XYZ().cast<float>();
input_point.num_visible_images = point3D.second.Track().Length();
points.push_back(input_point);
}
for (const auto image_id : reconstruction.RegImageIds()) {
const auto& image = reconstruction.Image(image_id);
DelaunayMeshingInput::Image input_image;
input_image.camera_id = image.CameraId();
input_image.proj_center = image.ProjectionCenter().cast<float>();
input_image.point_idxs.reserve(image.NumPoints3D());
for (const auto& point2D : image.Points2D()) {
if (point2D.HasPoint3D()) {
input_image.point_idxs.push_back(
point_id_to_idx.at(point2D.Point3DId()));
}
}
images.push_back(input_image);
}
}
void ReadDenseReconstruction(const std::string& path) {
{
Reconstruction reconstruction;
reconstruction.Read(JoinPaths(path, "sparse"));
cameras = reconstruction.Cameras();
images.reserve(reconstruction.NumRegImages());
for (const auto& image_id : reconstruction.RegImageIds()) {
const auto& image = reconstruction.Image(image_id);
DelaunayMeshingInput::Image input_image;
input_image.camera_id = image.CameraId();
input_image.proj_center = image.ProjectionCenter().cast<float>();
images.push_back(input_image);
}
}
const auto& ply_points = ReadPly(JoinPaths(path, "fused.ply"));
const std::string vis_path = JoinPaths(path, "fused.ply.vis");
std::fstream vis_file(vis_path, std::ios::in | std::ios::binary);
CHECK(vis_file.is_open()) << vis_path;
const size_t vis_num_points = ReadBinaryLittleEndian<uint64_t>(&vis_file);
CHECK_EQ(vis_num_points, ply_points.size());
points.reserve(ply_points.size());
for (const auto& ply_point : ply_points) {
const int point_idx = points.size();
DelaunayMeshingInput::Point input_point;
input_point.position =
Eigen::Vector3f(ply_point.x, ply_point.y, ply_point.z);
input_point.num_visible_images =
ReadBinaryLittleEndian<uint32_t>(&vis_file);
for (uint32_t i = 0; i < input_point.num_visible_images; ++i) {
const int image_idx = ReadBinaryLittleEndian<uint32_t>(&vis_file);
images.at(image_idx).point_idxs.push_back(point_idx);
}
points.push_back(input_point);
}
}
Delaunay CreateDelaunayTriangulation() const {
std::vector<Delaunay::Point> delaunay_points(points.size());
for (size_t i = 0; i < points.size(); ++i) {
delaunay_points[i] =
Delaunay::Point(points[i].position.x(), points[i].position.y(),
points[i].position.z());
}
return Delaunay(delaunay_points.begin(), delaunay_points.end());
}
Delaunay CreateSubSampledDelaunayTriangulation(
const float max_proj_dist, const float max_depth_dist) const {
CHECK_GE(max_proj_dist, 0);
if (max_proj_dist == 0) {
return CreateDelaunayTriangulation();
}
std::vector<std::vector<uint32_t>> points_visible_image_idxs(points.size());
for (size_t image_idx = 0; image_idx < images.size(); ++image_idx) {
for (const auto& point_idx : images[image_idx].point_idxs) {
points_visible_image_idxs[point_idx].push_back(image_idx);
}
}
std::vector<size_t> point_idxs(points.size());
std::iota(point_idxs.begin(), point_idxs.end(), 0);
Shuffle(point_idxs.size(), &point_idxs);
Delaunay triangulation;
const float max_squared_proj_dist = max_proj_dist * max_proj_dist;
const float min_depth_ratio = 1.0f - max_depth_dist;
const float max_depth_ratio = 1.0f + max_depth_dist;
for (const auto point_idx : point_idxs) {
const auto& point = points[point_idx];
const auto& visible_image_idxs = points_visible_image_idxs[point_idx];
const K::Point_3 point_position = EigenToCGAL(point.position);
// Insert point into triangulation until there is one cell.
if (triangulation.number_of_vertices() < 4) {
triangulation.insert(point_position);
continue;
}
const Delaunay::Cell_handle cell = triangulation.locate(point_position);
// If the point is outside the current hull, then extend the hull.
if (triangulation.is_infinite(cell)) {
triangulation.insert(point_position);
continue;
}
// Project point and located cell vertices to all visible images and
// determine reprojection error.
bool insert_point = false;
for (const auto& image_idx : visible_image_idxs) {
const auto& image = images[image_idx];
const auto& camera = cameras.at(image.camera_id);
for (int i = 0; i < 4; ++i) {
const Eigen::Vector3f cell_point =
CGALToEigen(cell->vertex(i)->point());
const Eigen::Vector3f point_local =
image.proj_matrix * point.position.homogeneous();
const Eigen::Vector3f cell_point_local =
image.proj_matrix * cell_point.homogeneous();
// Ensure that both points are infront of camera.
if (point_local.z() <= 0 || cell_point_local.z() <= 0) {
insert_point = true;
break;
}
// Check depth ratio between the two points.
const float depth_ratio = point_local.z() / cell_point_local.z();
if (depth_ratio < min_depth_ratio || depth_ratio > max_depth_ratio) {
insert_point = true;
break;
}
// Check reprojection error between the two points.
const Eigen::Vector2f point_proj =
camera.WorldToImage(point_local.hnormalized().cast<double>())
.cast<float>();
const Eigen::Vector2f cell_point_proj =
camera.WorldToImage(cell_point_local.hnormalized().cast<double>())
.cast<float>();
const float squared_proj_dist =
(point_proj - cell_point_proj).squaredNorm();
if (squared_proj_dist > max_squared_proj_dist) {
insert_point = true;
break;
}
}
if (insert_point) {
break;
}
}
if (insert_point) {
triangulation.insert(point_position);
}
}
std::cout << StringPrintf("Triangulation has %d using %d points.",
triangulation.number_of_vertices(), points.size())
<< std::endl;
return triangulation;
}
};
struct DelaunayMeshingEdgeWeightComputer {
DelaunayMeshingEdgeWeightComputer(const Delaunay& triangulation,
const double visibility_sigma,
const double distance_sigma_factor)
: visibility_threshold_(5 * visibility_sigma),
visibility_normalization_(-0.5 /
(visibility_sigma * visibility_sigma)) {
std::vector<float> edge_lengths;
edge_lengths.reserve(triangulation.number_of_finite_edges());
for (auto it = triangulation.finite_edges_begin();
it != triangulation.finite_edges_end(); ++it) {
edge_lengths.push_back((it->first->vertex(it->second)->point() -
it->first->vertex(it->third)->point())
.squared_length());
}
distance_sigma_ = distance_sigma_factor *
std::max(std::sqrt(Percentile(edge_lengths, 25)), 1e-7f);
distance_threshold_ = 5 * distance_sigma_;
distance_normalization_ = -0.5 / (distance_sigma_ * distance_sigma_);
}
double DistanceSigma() const { return distance_sigma_; }
double ComputeVisibilityProb(const double visibility_squared) const {
if (visibility_squared < visibility_threshold_) {
return std::max(
0.0, 1.0 - std::exp(visibility_squared * visibility_normalization_));
} else {
return 1.0;
}
}
double ComputeDistanceProb(const double distance_squared) const {
if (distance_squared < distance_threshold_) {
return std::max(
0.0, 1.0 - std::exp(distance_squared * distance_normalization_));
} else {
return 1.0;
}
}
private:
double visibility_threshold_;
double visibility_normalization_;
double distance_sigma_;
double distance_threshold_;
double distance_normalization_;
};
// Ray caster through the cells of a Delaunay triangulation. The tracing locates
// the cell of the ray origin and then iteratively intersects the ray with all
// facets of the current cell and advances to the neighboring cell of the
// intersected facet. Note that the ray can also pass through outside of the
// hull of the triangulation, i.e. lie within the infinite cells/facets.
// The ray caster collects the intersected facets along the ray.
struct DelaunayTriangulationRayCaster {
struct Intersection {
Delaunay::Facet facet;
double target_distance_squared = 0.0;
};
DelaunayTriangulationRayCaster(const Delaunay& triangulation)
: triangulation_(triangulation) {
FindHullFacets();
}
void CastRaySegment(const K::Segment_3& ray_segment,
std::vector<Intersection>* intersections) const {
intersections->clear();
Delaunay::Cell_handle next_cell =
triangulation_.locate(ray_segment.start());
bool next_cell_found = true;
while (next_cell_found) {
next_cell_found = false;
if (triangulation_.is_infinite(next_cell)) {
// Linearly check all hull facets for intersection.
for (const auto& hull_facet : hull_facets_) {
// Check if the ray origin is infront of the facet.
const K::Triangle_3 triangle = triangulation_.triangle(hull_facet);
if (CGAL::orientation(triangle[0], triangle[1], triangle[2],
ray_segment.start()) ==
K::Orientation::NEGATIVE) {
continue;
}
// Check if the segment intersects the facet.
K::Point_3 intersection_point;
if (!CGAL::assign(intersection_point,
CGAL::intersection(ray_segment, triangle))) {
continue;
}
// Make sure the next intersection is closer to target than previous.
const double target_distance_squared =
(intersection_point - ray_segment.end()).squared_length();
if (!intersections->empty() &&
intersections->back().target_distance_squared <
target_distance_squared) {
continue;
}
Intersection intersection;
intersection.facet =
Delaunay::Facet(hull_facet.first, hull_facet.second);
intersection.target_distance_squared = target_distance_squared;
intersections->push_back(intersection);
next_cell = hull_facet.first->neighbor(hull_facet.second);
next_cell_found = true;
break;
}
} else {
// Check all neighboring finite facets for intersection.
for (int i = 0; i < 4; ++i) {
// Check if the ray origin is infront of the facet.
const K::Triangle_3 triangle = triangulation_.triangle(next_cell, i);
if (CGAL::orientation(triangle[0], triangle[1], triangle[2],
ray_segment.start()) ==
K::Orientation::NEGATIVE) {
continue;
}
// Check if the segment intersects the facet.
K::Point_3 intersection_point;
if (!CGAL::assign(intersection_point,
CGAL::intersection(ray_segment, triangle))) {
continue;
}
// Make sure the next intersection is closer to target than previous.
const double target_distance_squared =
(intersection_point - ray_segment.end()).squared_length();
if (!intersections->empty() &&
intersections->back().target_distance_squared <
target_distance_squared) {
continue;
}
Intersection intersection;
intersection.facet = Delaunay::Facet(next_cell, i);
intersection.target_distance_squared = target_distance_squared;
intersections->push_back(intersection);
next_cell = next_cell->neighbor(i);
next_cell_found = true;
break;
}
}
}
}
private:
// Find all finite facets of infinite cells.
void FindHullFacets() {
for (auto it = triangulation_.all_cells_begin();
it != triangulation_.all_cells_end(); ++it) {
if (triangulation_.is_infinite(it)) {
for (int i = 0; i < 4; ++i) {
if (!triangulation_.is_infinite(it, i)) {
hull_facets_.emplace_back(it, i);
}
}
}
}
}
const Delaunay& triangulation_;
std::vector<Delaunay::Facet> hull_facets_;
};
// Implementation of geometry visualized in Figure 9 in P. Labatut, J‐P. Pons,
// and R. Keriven. "Robust and efficient surface reconstruction from range
// data." Computer graphics forum, 2009.
double ComputeCosFacetCellAngle(const Delaunay& triangulation,
const Delaunay::Facet& facet) {
if (triangulation.is_infinite(facet.first)) {
return 1.0;
}
const K::Triangle_3 triangle = triangulation.triangle(facet);
const K::Vector_3 facet_normal =
CGAL::cross_product(triangle[1] - triangle[0], triangle[2] - triangle[0]);
const double facet_normal_length_squared = facet_normal.squared_length();
if (facet_normal_length_squared == 0.0) {
return 0.5;
}
const K::Vector_3 co_tangent = facet.first->circumcenter() - triangle[0];
const float co_tangent_length_squared = co_tangent.squared_length();
if (co_tangent_length_squared == 0.0) {
return 0.5;
}
return (facet_normal * co_tangent) /
std::sqrt(facet_normal_length_squared * co_tangent_length_squared);
}
void WriteDelaunayTriangulationPly(const std::string& path,
const Delaunay& triangulation) {
std::fstream file(path, std::ios::out);
CHECK(file.is_open());
file << "ply" << std::endl;
file << "format ascii 1.0" << std::endl;
file << "element vertex " << triangulation.number_of_vertices() << std::endl;
file << "property float x" << std::endl;
file << "property float y" << std::endl;
file << "property float z" << std::endl;
file << "element edge " << triangulation.number_of_finite_edges()
<< std::endl;
file << "property int vertex1" << std::endl;
file << "property int vertex2" << std::endl;
file << "element face " << triangulation.number_of_finite_facets()
<< std::endl;
file << "property list uchar int vertex_index" << std::endl;
file << "end_header" << std::endl;
std::unordered_map<const Delaunay::Vertex_handle, size_t> vertex_indices;
vertex_indices.reserve(triangulation.number_of_vertices());
for (auto it = triangulation.finite_vertices_begin();
it != triangulation.finite_vertices_end(); ++it) {
vertex_indices.emplace(it, vertex_indices.size());
file << it->point().x() << " " << it->point().y() << " " << it->point().z()
<< std::endl;
}
for (auto it = triangulation.finite_edges_begin();
it != triangulation.finite_edges_end(); ++it) {
file << vertex_indices.at(it->first->vertex(it->second)) << " "
<< vertex_indices.at(it->first->vertex(it->third)) << std::endl;
}
for (auto it = triangulation.finite_facets_begin();
it != triangulation.finite_facets_end(); ++it) {
file << "3 "
<< vertex_indices.at(it->first->vertex(
triangulation.vertex_triple_index(it->second, 0)))
<< " "
<< vertex_indices.at(it->first->vertex(
triangulation.vertex_triple_index(it->second, 1)))
<< " "
<< vertex_indices.at(it->first->vertex(
triangulation.vertex_triple_index(it->second, 2)))
<< std::endl;
}
}
struct DelaunayCellData {
DelaunayCellData() : DelaunayCellData(-1) {}
DelaunayCellData(const int index)
: index(index),
source_weight(0),
sink_weight(0),
edge_weights({{0, 0, 0, 0}}) {}
int index;
float source_weight;
float sink_weight;
std::array<float, 4> edge_weights;
};
PlyMesh DelaunayMeshing(const DelaunayMeshingOptions& options,
const DelaunayMeshingInput& input_data) {
CHECK(options.Check());
// Create a delaunay triangulation of all input points.
std::cout << "Triangulating points..." << std::endl;
const auto triangulation = input_data.CreateSubSampledDelaunayTriangulation(
options.max_proj_dist, options.max_depth_dist);
// Helper class to efficiently trace rays through the triangulation.
std::cout << "Initializing ray tracer..." << std::endl;
const DelaunayTriangulationRayCaster ray_caster(triangulation);
// Helper class to efficiently compute edge weights in the s-t graph.
const DelaunayMeshingEdgeWeightComputer edge_weight_computer(
triangulation, options.visibility_sigma, options.distance_sigma_factor);
// Initialize the s-t graph with cells as nodes and oriented facets as edges.
std::cout << "Initializing graph optimization..." << std::endl;
typedef std::unordered_map<const Delaunay::Cell_handle, DelaunayCellData>
CellGraphData;
CellGraphData cell_graph_data;
cell_graph_data.reserve(triangulation.number_of_cells());
for (auto it = triangulation.all_cells_begin();
it != triangulation.all_cells_end(); ++it) {
cell_graph_data.emplace(it, DelaunayCellData(cell_graph_data.size()));
}
// Spawn threads for parallelized integration of images.
const int num_threads = GetEffectiveNumThreads(options.num_threads);
ThreadPool thread_pool(num_threads);
JobQueue<CellGraphData> result_queue(num_threads);
// Function that accumulates edge weights in the s-t graph for a single image.
auto IntegreateImage = [&](const size_t image_idx) {
// Accumulated weights for the current image only.
CellGraphData image_cell_graph_data;
// Image that is integrated into s-t graph.
const auto& image = input_data.images[image_idx];
const K::Point_3 image_position = EigenToCGAL(image.proj_center);
// Intersections between viewing rays and Delaunay triangulation.
std::vector<DelaunayTriangulationRayCaster::Intersection> intersections;
// Iterate through all image observations and integrate them into the graph.
for (const auto& point_idx : image.point_idxs) {
const auto& point = input_data.points[point_idx];
// Likelihood of the point observation.
const double alpha = edge_weight_computer.ComputeVisibilityProb(
point.num_visible_images * point.num_visible_images);
const K::Point_3 point_position = EigenToCGAL(point.position);
const K::Ray_3 viewing_ray = K::Ray_3(image_position, point_position);
const K::Vector_3 viewing_direction = point_position - image_position;
const K::Vector_3 viewing_direction_normalized =
viewing_direction / std::sqrt(viewing_direction.squared_length());
const K::Vector_3 viewing_direction_epsilon =
0.001 * edge_weight_computer.DistanceSigma() *
viewing_direction_normalized;
// Find intersected facets between image and point.
ray_caster.CastRaySegment(
K::Segment_3(image_position,
point_position - viewing_direction_epsilon),
&intersections);
// Accumulate source weights for cell containing image.
if (!intersections.empty()) {
image_cell_graph_data[intersections.front().facet.first]
.source_weight += alpha;
}
// Accumulate edge weights from image to point.
for (const auto& intersection : intersections) {
image_cell_graph_data[intersection.facet.first]
.edge_weights[intersection.facet.second] +=
alpha * edge_weight_computer.ComputeDistanceProb(
intersection.target_distance_squared);
}
// Accumulate edge weights from point to extended point
// and accumulate sink weight of the cell inside the surface.
{
// Find the first facet that is intersected by the extended ray behind
// the observed point. Then accumulate the edge weight of that facet
// and accumulate the sink weight of the cell behind that facet.
const Delaunay::Cell_handle behind_point_cell =
triangulation.locate(point_position + viewing_direction_epsilon);
int behind_neighbor_idx = -1;
double behind_distance_squared = 0.0;
for (int neighbor_idx = 0; neighbor_idx < 4; ++neighbor_idx) {
const K::Triangle_3 triangle =
triangulation.triangle(behind_point_cell, neighbor_idx);
K::Point_3 inter_point;
if (CGAL::assign(inter_point,
CGAL::intersection(viewing_ray, triangle))) {
const double distance_squared =
(inter_point - point_position).squared_length();
if (distance_squared > behind_distance_squared) {
behind_distance_squared = distance_squared;
behind_neighbor_idx = neighbor_idx;
}
}
}
if (behind_neighbor_idx >= 0) {
image_cell_graph_data[behind_point_cell]
.edge_weights[behind_neighbor_idx] +=
alpha *
edge_weight_computer.ComputeDistanceProb(behind_distance_squared);
const auto& inside_cell =
behind_point_cell->neighbor(behind_neighbor_idx);
image_cell_graph_data[inside_cell].sink_weight += alpha;
}
}
}
CHECK(result_queue.Push(image_cell_graph_data));
};
// Add first batch of images to the thread job queue.
size_t image_idx = 0;
const size_t init_num_tasks =
std::min(input_data.images.size(), 2 * thread_pool.NumThreads());
for (; image_idx < init_num_tasks; ++image_idx) {
thread_pool.AddTask(IntegreateImage, image_idx);
}
// Pop the integrated images from the thread job queue and integrate their
// accumulated weights into the global graph.
for (size_t i = 0; i < input_data.images.size(); ++i) {
Timer timer;
timer.Start();
std::cout << StringPrintf("Integrating image [%d/%d]", i + 1,
input_data.images.size())
<< std::flush;
// Push the next image to the queue.
if (image_idx < input_data.images.size()) {
thread_pool.AddTask(IntegreateImage, image_idx);
image_idx += 1;
}
// Pop the next results from the queue.
const auto result = result_queue.Pop();
CHECK(result.IsValid());
// Accumulate the weights of the image into the global graph.
const auto& image_cell_graph_data = result.Data();
for (const auto& image_cell_data : image_cell_graph_data) {
auto& cell_data = cell_graph_data.at(image_cell_data.first);
cell_data.sink_weight += image_cell_data.second.sink_weight;
cell_data.source_weight += image_cell_data.second.source_weight;
for (size_t j = 0; j < cell_data.edge_weights.size(); ++j) {
cell_data.edge_weights[j] += image_cell_data.second.edge_weights[j];
}
}
std::cout << StringPrintf(" in %.3fs", timer.ElapsedSeconds()) << std::endl;
}
// Setup the min-cut (max-flow) graph optimization.
std::cout << "Setting up optimization..." << std::endl;
// Each oriented facet in the Delaunay triangulation corresponds to a directed
// edge and each cell corresponds to a node in the graph.
MinSTGraphCut<size_t, float> graph_cut(cell_graph_data.size());
// Iterate all cells in the triangulation.
for (auto& cell_data : cell_graph_data) {
graph_cut.AddNode(cell_data.second.index, cell_data.second.source_weight,
cell_data.second.sink_weight);
// Iterate all facets of the current cell to accumulate edge weight.
for (int i = 0; i < 4; ++i) {
// Compose the current facet.
const Delaunay::Facet facet = std::make_pair(cell_data.first, i);
// Extract the mirrored facet of the current cell (opposite orientation).
const Delaunay::Facet mirror_facet = triangulation.mirror_facet(facet);
const auto& mirror_cell_data = cell_graph_data.at(mirror_facet.first);
// Avoid duplicate edges in graph.
if (cell_data.second.index < mirror_cell_data.index) {
continue;
}
// Implementation of geometry visualized in Figure 9 in P. Labatut, J‐P.
// Pons, and R. Keriven. "Robust and efficient surface reconstruction from
// range data." Computer graphics forum, 2009.
const double edge_shape_weight =
options.quality_regularization *
(1.0 -
std::min(ComputeCosFacetCellAngle(triangulation, facet),
ComputeCosFacetCellAngle(triangulation, mirror_facet)));
const float forward_edge_weight =
cell_data.second.edge_weights[facet.second] + edge_shape_weight;
const float backward_edge_weight =
mirror_cell_data.edge_weights[mirror_facet.second] +
edge_shape_weight;
graph_cut.AddEdge(cell_data.second.index, mirror_cell_data.index,
forward_edge_weight, backward_edge_weight);
}
}
// Extract the surface facets as the oriented min-cut of the graph.
std::cout << "Running graph-cut optimization..." << std::endl;
graph_cut.Compute();
std::cout << "Extracting surface as min-cut..." << std::endl;
std::unordered_set<Delaunay::Vertex_handle> surface_vertices;
std::vector<Delaunay::Facet> surface_facets;
std::vector<float> surface_facet_side_lengths;
for (auto it = triangulation.finite_facets_begin();
it != triangulation.finite_facets_end(); ++it) {
const auto& cell_data = cell_graph_data.at(it->first);
const auto& mirror_cell_data =
cell_graph_data.at(it->first->neighbor(it->second));
// Obtain labeling after the graph-cut.
const bool cell_is_source = graph_cut.IsConnectedToSource(cell_data.index);
const bool mirror_cell_is_source =
graph_cut.IsConnectedToSource(mirror_cell_data.index);
// The surface is equal to the location of the cut, which is at the
// transition between source and sink nodes.
if (cell_is_source == mirror_cell_is_source) {
continue;
}
// Remember all unique vertices of the surface mesh.
for (int i = 0; i < 3; ++i) {
const auto& vertex =
it->first->vertex(triangulation.vertex_triple_index(it->second, i));
surface_vertices.insert(vertex);
}
// Determine maximum side length of facet.
const K::Triangle_3 triangle = triangulation.triangle(*it);
const float max_squared_side_length =
std::max({(triangle[0] - triangle[1]).squared_length(),
(triangle[0] - triangle[2]).squared_length(),
(triangle[1] - triangle[2]).squared_length()});
surface_facet_side_lengths.push_back(std::sqrt(max_squared_side_length));
// Remember surface mesh facet and make sure it is oriented correctly.
if (cell_is_source) {
surface_facets.push_back(*it);
} else {
surface_facets.push_back(triangulation.mirror_facet(*it));
}
}
std::cout << "Creating surface mesh model..." << std::endl;
PlyMesh mesh;
std::unordered_map<const Delaunay::Vertex_handle, size_t>
surface_vertex_indices;
surface_vertex_indices.reserve(surface_vertices.size());
mesh.vertices.reserve(surface_vertices.size());
for (const auto& vertex : surface_vertices) {
mesh.vertices.emplace_back(vertex->point().x(), vertex->point().y(),
vertex->point().z());
surface_vertex_indices.emplace(vertex, surface_vertex_indices.size());
}
const float max_facet_side_length =
options.max_side_length_factor *
Percentile(surface_facet_side_lengths,
options.max_side_length_percentile);
mesh.faces.reserve(surface_facets.size());
for (size_t i = 0; i < surface_facets.size(); ++i) {
// Note that skipping some of the facets here means that there will be
// some unused vertices in the final mesh.
if (surface_facet_side_lengths[i] > max_facet_side_length) {
continue;
}
const auto& facet = surface_facets[i];
mesh.faces.emplace_back(
surface_vertex_indices.at(facet.first->vertex(
triangulation.vertex_triple_index(facet.second, 0))),
surface_vertex_indices.at(facet.first->vertex(
triangulation.vertex_triple_index(facet.second, 1))),
surface_vertex_indices.at(facet.first->vertex(
triangulation.vertex_triple_index(facet.second, 2))));
}
return mesh;
}
void SparseDelaunayMeshing(const DelaunayMeshingOptions& options,
const std::string& input_path,
const std::string& output_path) {
Timer timer;
timer.Start();
DelaunayMeshingInput input_data;
input_data.ReadSparseReconstruction(input_path);
const auto mesh = DelaunayMeshing(options, input_data);
std::cout << "Writing surface mesh..." << std::endl;
WriteBinaryPlyMesh(output_path, mesh);
timer.PrintSeconds();
}
void DenseDelaunayMeshing(const DelaunayMeshingOptions& options,
const std::string& input_path,
const std::string& output_path) {
Timer timer;
timer.Start();
DelaunayMeshingInput input_data;
input_data.ReadDenseReconstruction(input_path);
const auto mesh = DelaunayMeshing(options, input_data);
std::cout << "Writing surface mesh..." << std::endl;
WriteBinaryPlyMesh(output_path, mesh);
timer.PrintSeconds();
}
#endif // CGAL_ENABLED
} // namespace mvs
} // namespace colmap
|