1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
// Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: Johannes L. Schoenberger (jsch at inf.ethz.ch)
#ifndef COLMAP_SRC_MVS_FUSION_H_
#define COLMAP_SRC_MVS_FUSION_H_
#include <unordered_set>
#include <vector>
#include <Eigen/Core>
#include "mvs/depth_map.h"
#include "mvs/image.h"
#include "mvs/mat.h"
#include "mvs/model.h"
#include "mvs/normal_map.h"
#include "mvs/workspace.h"
#include "util/alignment.h"
#include "util/cache.h"
#include "util/math.h"
#include "util/ply.h"
#include "util/threading.h"
namespace colmap {
namespace mvs {
struct StereoFusionOptions {
// Maximum image size in either dimension.
int max_image_size = -1;
// Minimum number of fused pixels to produce a point.
int min_num_pixels = 5;
// Maximum number of pixels to fuse into a single point.
int max_num_pixels = 10000;
// Maximum depth in consistency graph traversal.
int max_traversal_depth = 100;
// Maximum relative difference between measured and projected pixel.
double max_reproj_error = 2.0f;
// Maximum relative difference between measured and projected depth.
double max_depth_error = 0.01f;
// Maximum angular difference in degrees of normals of pixels to be fused.
double max_normal_error = 10.0f;
// Number of overlapping images to transitively check for fusing points.
int check_num_images = 50;
// Cache size in gigabytes for fusion. The fusion keeps the bitmaps, depth
// maps, normal maps, and consistency graphs of this number of images in
// memory. A higher value leads to less disk access and faster fusion, while
// a lower value leads to reduced memory usage. Note that a single image can
// consume a lot of memory, if the consistency graph is dense.
double cache_size = 32.0;
// Check the options for validity.
bool Check() const;
// Print the options to stdout.
void Print() const;
};
class StereoFusion : public Thread {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
StereoFusion(const StereoFusionOptions& options,
const std::string& workspace_path,
const std::string& workspace_format,
const std::string& pmvs_option_name,
const std::string& input_type);
const std::vector<PlyPoint>& GetFusedPoints() const;
const std::vector<std::vector<int>>& GetFusedPointsVisibility() const;
private:
void Run();
void Fuse();
const StereoFusionOptions options_;
const std::string workspace_path_;
const std::string workspace_format_;
const std::string pmvs_option_name_;
const std::string input_type_;
const float max_squared_reproj_error_;
const float min_cos_normal_error_;
std::unique_ptr<Workspace> workspace_;
std::vector<char> used_images_;
std::vector<char> fused_images_;
std::vector<std::vector<int>> overlapping_images_;
std::vector<Mat<bool>> fused_pixel_masks_;
std::vector<std::pair<int, int>> depth_map_sizes_;
std::vector<std::pair<float, float>> bitmap_scales_;
std::vector<Eigen::Matrix<float, 3, 4, Eigen::RowMajor>> P_;
std::vector<Eigen::Matrix<float, 3, 4, Eigen::RowMajor>> inv_P_;
std::vector<Eigen::Matrix<float, 3, 3, Eigen::RowMajor>> inv_R_;
struct FusionData {
int image_idx = kInvalidImageId;
int row = 0;
int col = 0;
int traversal_depth = -1;
bool operator()(const FusionData& data1, const FusionData& data2) {
return data1.image_idx > data2.image_idx;
}
};
// Next points to fuse.
std::vector<FusionData> fusion_queue_;
// Already fused points.
std::vector<PlyPoint> fused_points_;
std::vector<std::vector<int>> fused_points_visibility_;
// Points of different pixels of the currently point to be fused.
std::vector<float> fused_point_x_;
std::vector<float> fused_point_y_;
std::vector<float> fused_point_z_;
std::vector<float> fused_point_nx_;
std::vector<float> fused_point_ny_;
std::vector<float> fused_point_nz_;
std::vector<uint8_t> fused_point_r_;
std::vector<uint8_t> fused_point_g_;
std::vector<uint8_t> fused_point_b_;
std::unordered_set<int> fused_point_visibility_;
};
// Write the visiblity information into a binary file of the following format:
//
// <num_points : uint64_t>
// <num_visible_images_for_point1 : uint32_t>
// <point1_image_idx1 : uint32_t><point1_image_idx2 : uint32_t> ...
// <num_visible_images_for_point2 : uint32_t>
// <point2_image_idx2 : uint32_t><point2_image_idx2 : uint32_t> ...
// ...
//
// Note that an image_idx in the case of the mvs::StereoFuser does not
// correspond to the image_id of a Reconstruction, but the index of the image in
// the mvs::Model, which is the location of the image in the images.bin/.txt.
void WritePointsVisibility(
const std::string& path,
const std::vector<std::vector<int>>& points_visibility);
} // namespace mvs
} // namespace colmap
#endif // COLMAP_SRC_MVS_FUSION_H_
|