1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
// Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: Johannes L. Schoenberger (jsch at inf.ethz.ch)
#ifndef COLMAP_SRC_UTIL_THREADING_
#define COLMAP_SRC_UTIL_THREADING_
#include <atomic>
#include <climits>
#include <functional>
#include <future>
#include <list>
#include <queue>
#include <unordered_map>
#include "util/timer.h"
namespace colmap {
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wkeyword-macro"
#endif
// Define `thread_local` cross-platform.
#ifndef thread_local
#if __STDC_VERSION__ >= 201112 && !defined __STDC_NO_THREADS__
#define thread_local _Thread_local
#elif defined _WIN32 && (defined _MSC_VER || defined __ICL || \
defined __DMC__ || defined __BORLANDC__)
#define thread_local __declspec(thread)
#elif defined __GNUC__ || defined __SUNPRO_C || defined __xlC__
#define thread_local __thread
#else
#error "Cannot define thread_local"
#endif
#endif
#ifdef __clang__
#pragma clang diagnostic pop // -Wkeyword-macro
#endif
// Helper class to create single threads with simple controls and timing, e.g.:
//
// class MyThread : public Thread {
// enum {
// PROCESSED_CALLBACK,
// };
//
// MyThread() { RegisterCallback(PROCESSED_CALLBACK); }
// void Run() {
// // Some setup routine... note that this optional.
// if (setup_valid) {
// SignalValidSetup();
// } else {
// SignalInvalidSetup();
// }
//
// // Some pre-processing...
// for (const auto& item : items) {
// BlockIfPaused();
// if (IsStopped()) {
// // Tear down...
// break;
// }
// // Process item...
// Callback(PROCESSED_CALLBACK);
// }
// }
// };
//
// MyThread thread;
// thread.AddCallback(MyThread::PROCESSED_CALLBACK, []() {
// std::cout << "Processed item"; })
// thread.AddCallback(MyThread::STARTED_CALLBACK, []() {
// std::cout << "Start"; })
// thread.AddCallback(MyThread::FINISHED_CALLBACK, []() {
// std::cout << "Finished"; })
// thread.Start();
// // thread.CheckValidSetup();
// // Pause, resume, stop, ...
// thread.Wait();
// thread.Timer().PrintElapsedSeconds();
//
class Thread {
public:
enum {
STARTED_CALLBACK = INT_MIN,
FINISHED_CALLBACK,
};
Thread();
virtual ~Thread() = default;
// Control the state of the thread.
virtual void Start();
virtual void Stop();
virtual void Pause();
virtual void Resume();
virtual void Wait();
// Check the state of the thread.
bool IsStarted();
bool IsStopped();
bool IsPaused();
bool IsRunning();
bool IsFinished();
// To be called from inside the main run function. This blocks the main
// caller, if the thread is paused, until the thread is resumed.
void BlockIfPaused();
// To be called from outside. This blocks the caller until the thread is
// setup, i.e. it signaled that its setup was valid or not. If it never gives
// this signal, this call will block the caller infinitely. Check whether
// setup is valid. Note that the result is only meaningful if the thread gives
// a setup signal.
bool CheckValidSetup();
// Set callbacks that can be triggered within the main run function.
void AddCallback(const int id, const std::function<void()>& func);
// Get timing information of the thread, properly accounting for pause times.
const Timer& GetTimer() const;
protected:
// This is the main run function to be implemented by the child class. If you
// are looping over data and want to support the pause operation, call
// `BlockIfPaused` at appropriate places in the loop. To support the stop
// operation, check the `IsStopped` state and early return from this method.
virtual void Run() = 0;
// Register a new callback. Note that only registered callbacks can be
// set/reset and called from within the thread. Hence, this method should be
// called from the derived thread constructor.
void RegisterCallback(const int id);
// Call back to the function with the specified name, if it exists.
void Callback(const int id) const;
// Get the unique identifier of the current thread.
std::thread::id GetThreadId() const;
// Signal that the thread is setup. Only call this function once.
void SignalValidSetup();
void SignalInvalidSetup();
private:
// Wrapper around the main run function to set the finished flag.
void RunFunc();
std::thread thread_;
std::mutex mutex_;
std::condition_variable pause_condition_;
std::condition_variable setup_condition_;
Timer timer_;
bool started_;
bool stopped_;
bool paused_;
bool pausing_;
bool finished_;
bool setup_;
bool setup_valid_;
std::unordered_map<int, std::list<std::function<void()>>> callbacks_;
};
// A thread pool class to submit generic tasks (functors) to a pool of workers:
//
// ThreadPool thread_pool;
// thread_pool.AddTask([]() { /* Do some work */ });
// auto future = thread_pool.AddTask([]() { /* Do some work */ return 1; });
// const auto result = future.get();
// for (int i = 0; i < 10; ++i) {
// thread_pool.AddTask([](const int i) { /* Do some work */ });
// }
// thread_pool.Wait();
//
class ThreadPool {
public:
static const int kMaxNumThreads = -1;
explicit ThreadPool(const int num_threads = kMaxNumThreads);
~ThreadPool();
inline size_t NumThreads() const;
// Add new task to the thread pool.
template <class func_t, class... args_t>
auto AddTask(func_t&& f, args_t&&... args)
-> std::future<typename std::result_of<func_t(args_t...)>::type>;
// Stop the execution of all workers.
void Stop();
// Wait until tasks are finished.
void Wait();
// Get the unique identifier of the current thread.
std::thread::id GetThreadId() const;
// Get the index of the current thread. In a thread pool of size N,
// the thread index defines the 0-based index of the thread in the pool.
// In other words, there are the thread indices 0, ..., N-1.
int GetThreadIndex();
private:
void WorkerFunc(const int index);
std::vector<std::thread> workers_;
std::queue<std::function<void()>> tasks_;
std::mutex mutex_;
std::condition_variable task_condition_;
std::condition_variable finished_condition_;
bool stopped_;
int num_active_workers_;
std::unordered_map<std::thread::id, int> thread_id_to_index_;
};
// A job queue class for the producer-consumer paradigm.
//
// JobQueue<int> job_queue;
//
// std::thread producer_thread([&job_queue]() {
// for (int i = 0; i < 10; ++i) {
// job_queue.Push(i);
// }
// });
//
// std::thread consumer_thread([&job_queue]() {
// for (int i = 0; i < 10; ++i) {
// const auto job = job_queue.Pop();
// if (job.IsValid()) { /* Do some work */ }
// else { break; }
// }
// });
//
// producer_thread.join();
// consumer_thread.join();
//
template <typename T>
class JobQueue {
public:
class Job {
public:
Job() : valid_(false) {}
explicit Job(const T& data) : data_(data), valid_(true) {}
// Check whether the data is valid.
bool IsValid() const { return valid_; }
// Get reference to the data.
T& Data() { return data_; }
const T& Data() const { return data_; }
private:
T data_;
bool valid_;
};
JobQueue();
explicit JobQueue(const size_t max_num_jobs);
~JobQueue();
// The number of pushed and not popped jobs in the queue.
size_t Size();
// Push a new job to the queue. Waits if the number of jobs is exceeded.
bool Push(const T& data);
// Pop a job from the queue. Waits if there is no job in the queue.
Job Pop();
// Wait for all jobs to be popped and then stop the queue.
void Wait();
// Stop the queue and return from all push/pop calls with false.
void Stop();
// Clear all pushed and not popped jobs from the queue.
void Clear();
private:
size_t max_num_jobs_;
std::atomic<bool> stop_;
std::queue<T> jobs_;
std::mutex mutex_;
std::condition_variable push_condition_;
std::condition_variable pop_condition_;
std::condition_variable empty_condition_;
};
// Return the number of logical CPU cores if num_threads <= 0,
// otherwise return the input value of num_threads.
int GetEffectiveNumThreads(const int num_threads);
////////////////////////////////////////////////////////////////////////////////
// Implementation
////////////////////////////////////////////////////////////////////////////////
size_t ThreadPool::NumThreads() const { return workers_.size(); }
template <class func_t, class... args_t>
auto ThreadPool::AddTask(func_t&& f, args_t&&... args)
-> std::future<typename std::result_of<func_t(args_t...)>::type> {
typedef typename std::result_of<func_t(args_t...)>::type return_t;
auto task = std::make_shared<std::packaged_task<return_t()>>(
std::bind(std::forward<func_t>(f), std::forward<args_t>(args)...));
std::future<return_t> result = task->get_future();
{
std::unique_lock<std::mutex> lock(mutex_);
if (stopped_) {
throw std::runtime_error("Cannot add task to stopped thread pool.");
}
tasks_.emplace([task]() { (*task)(); });
}
task_condition_.notify_one();
return result;
}
template <typename T>
JobQueue<T>::JobQueue() : JobQueue(std::numeric_limits<size_t>::max()) {}
template <typename T>
JobQueue<T>::JobQueue(const size_t max_num_jobs)
: max_num_jobs_(max_num_jobs), stop_(false) {}
template <typename T>
JobQueue<T>::~JobQueue() {
Stop();
}
template <typename T>
size_t JobQueue<T>::Size() {
std::unique_lock<std::mutex> lock(mutex_);
return jobs_.size();
}
template <typename T>
bool JobQueue<T>::Push(const T& data) {
std::unique_lock<std::mutex> lock(mutex_);
while (jobs_.size() >= max_num_jobs_ && !stop_) {
pop_condition_.wait(lock);
}
if (stop_) {
return false;
} else {
jobs_.push(data);
push_condition_.notify_one();
return true;
}
}
template <typename T>
typename JobQueue<T>::Job JobQueue<T>::Pop() {
std::unique_lock<std::mutex> lock(mutex_);
while (jobs_.empty() && !stop_) {
push_condition_.wait(lock);
}
if (stop_) {
return Job();
} else {
const T data = jobs_.front();
jobs_.pop();
pop_condition_.notify_one();
if (jobs_.empty()) {
empty_condition_.notify_all();
}
return Job(data);
}
}
template <typename T>
void JobQueue<T>::Wait() {
std::unique_lock<std::mutex> lock(mutex_);
while (!jobs_.empty()) {
empty_condition_.wait(lock);
}
}
template <typename T>
void JobQueue<T>::Stop() {
stop_ = true;
push_condition_.notify_all();
pop_condition_.notify_all();
}
template <typename T>
void JobQueue<T>::Clear() {
std::unique_lock<std::mutex> lock(mutex_);
std::queue<T> empty_jobs;
std::swap(jobs_, empty_jobs);
}
} // namespace colmap
#endif // COLMAP_SRC_UTIL_THREADING_
|