1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
// Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: Johannes L. Schoenberger (jsch at inf.ethz.ch)
#ifndef COLMAP_SRC_UTIL_MATH_H_
#define COLMAP_SRC_UTIL_MATH_H_
#include <algorithm>
#include <cmath>
#include <complex>
#include <limits>
#include <list>
#include <stdexcept>
#include <vector>
#include "util/logging.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846264338327950288
#endif
namespace colmap {
// Return 1 if number is positive, -1 if negative, and 0 if the number is 0.
template <typename T>
int SignOfNumber(const T val);
// Check if the given floating point number is a not-a-number (NaN) value.
inline bool IsNaN(const float x);
inline bool IsNaN(const double x);
// Check if the given floating point number is a infinity.
inline bool IsInf(const float x);
inline bool IsInf(const double x);
// Clip the given value to a low and maximum value.
template <typename T>
inline T Clip(const T& value, const T& low, const T& high);
// Convert angle in degree to radians.
inline float DegToRad(const float deg);
inline double DegToRad(const double deg);
// Convert angle in radians to degree.
inline float RadToDeg(const float rad);
inline double RadToDeg(const double rad);
// Determine median value in vector. Returns NaN for empty vectors.
template <typename T>
double Median(const std::vector<T>& elems);
// Determine mean value in a vector.
template <typename T>
double Mean(const std::vector<T>& elems);
// Determine sample variance in a vector.
template <typename T>
double Variance(const std::vector<T>& elems);
// Determine sample standard deviation in a vector.
template <typename T>
double StdDev(const std::vector<T>& elems);
// Check if any of the values in the vector is less than the given threshold.
template <typename T>
bool AnyLessThan(std::vector<T> elems, T threshold);
// Check if any of the values in the vector is greater than the given threshold.
template <typename T>
bool AnyGreaterThan(std::vector<T> elems, T threshold);
// Generate N-choose-K combinations.
//
// Note that elements in range [first, last) must be in sorted order,
// according to `std::less`.
template <class Iterator>
bool NextCombination(Iterator first, Iterator middle, Iterator last);
// Sigmoid function.
template <typename T>
T Sigmoid(const T x, const T alpha = 1);
// Scale values according to sigmoid transform.
//
// x \in [0, 1] -> x \in [-x0, x0] -> sigmoid(x, alpha) -> x \in [0, 1]
//
// @param x Value to be scaled in the range [0, 1].
// @param x0 Spread that determines the range x is scaled to.
// @param alpha Exponential sigmoid factor.
//
// @return The scaled value in the range [0, 1].
template <typename T>
T ScaleSigmoid(T x, const T alpha = 1, const T x0 = 10);
// Binomial coefficient or all combinations, defined as n! / ((n - k)! k!).
size_t NChooseK(const size_t n, const size_t k);
// Cast value from one type to another and truncate instead of overflow, if the
// input value is out of range of the output data type.
template <typename T1, typename T2>
T2 TruncateCast(const T1 value);
// Compute the n-th percentile in the given sequence.
template <typename T>
T Percentile(const std::vector<T>& elems, const double p);
////////////////////////////////////////////////////////////////////////////////
// Implementation
////////////////////////////////////////////////////////////////////////////////
namespace internal {
template <class Iterator>
bool NextCombination(Iterator first1, Iterator last1, Iterator first2,
Iterator last2) {
if ((first1 == last1) || (first2 == last2)) {
return false;
}
Iterator m1 = last1;
Iterator m2 = last2;
--m2;
while (--m1 != first1 && *m1 >= *m2) {
}
bool result = (m1 == first1) && *first1 >= *m2;
if (!result) {
while (first2 != m2 && *m1 >= *first2) {
++first2;
}
first1 = m1;
std::iter_swap(first1, first2);
++first1;
++first2;
}
if ((first1 != last1) && (first2 != last2)) {
m1 = last1;
m2 = first2;
while ((m1 != first1) && (m2 != last2)) {
std::iter_swap(--m1, m2);
++m2;
}
std::reverse(first1, m1);
std::reverse(first1, last1);
std::reverse(m2, last2);
std::reverse(first2, last2);
}
return !result;
}
} // namespace internal
template <typename T>
int SignOfNumber(const T val) {
return (T(0) < val) - (val < T(0));
}
bool IsNaN(const float x) { return x != x; }
bool IsNaN(const double x) { return x != x; }
bool IsInf(const float x) { return !IsNaN(x) && IsNaN(x - x); }
bool IsInf(const double x) { return !IsNaN(x) && IsNaN(x - x); }
template <typename T>
T Clip(const T& value, const T& low, const T& high) {
return std::max(low, std::min(value, high));
}
float DegToRad(const float deg) {
return deg * 0.0174532925199432954743716805978692718781530857086181640625f;
}
double DegToRad(const double deg) {
return deg * 0.0174532925199432954743716805978692718781530857086181640625;
}
// Convert angle in radians to degree.
float RadToDeg(const float rad) {
return rad * 57.29577951308232286464772187173366546630859375f;
}
double RadToDeg(const double rad) {
return rad * 57.29577951308232286464772187173366546630859375;
}
template <typename T>
double Median(const std::vector<T>& elems) {
CHECK(!elems.empty());
const size_t mid_idx = elems.size() / 2;
std::vector<T> ordered_elems = elems;
std::nth_element(ordered_elems.begin(), ordered_elems.begin() + mid_idx,
ordered_elems.end());
if (elems.size() % 2 == 0) {
const T mid_element1 = ordered_elems[mid_idx];
const T mid_element2 = *std::max_element(ordered_elems.begin(),
ordered_elems.begin() + mid_idx);
return (mid_element1 + mid_element2) / 2.0;
} else {
return ordered_elems[mid_idx];
}
}
template <typename T>
T Percentile(const std::vector<T>& elems, const double p) {
CHECK(!elems.empty());
CHECK_GE(p, 0);
CHECK_LE(p, 100);
const int idx = static_cast<int>(std::round(p / 100 * (elems.size() - 1)));
const size_t percentile_idx =
std::max(0, std::min(static_cast<int>(elems.size() - 1), idx));
std::vector<T> ordered_elems = elems;
std::nth_element(ordered_elems.begin(),
ordered_elems.begin() + percentile_idx, ordered_elems.end());
return ordered_elems.at(percentile_idx);
}
template <typename T>
double Mean(const std::vector<T>& elems) {
CHECK(!elems.empty());
double sum = 0;
for (const auto el : elems) {
sum += static_cast<double>(el);
}
return sum / elems.size();
}
template <typename T>
double Variance(const std::vector<T>& elems) {
const double mean = Mean(elems);
double var = 0;
for (const auto el : elems) {
const double diff = el - mean;
var += diff * diff;
}
return var / (elems.size() - 1);
}
template <typename T>
double StdDev(const std::vector<T>& elems) {
return std::sqrt(Variance(elems));
}
template <typename T>
bool AnyLessThan(std::vector<T> elems, T threshold) {
for (const auto& el : elems) {
if (el < threshold) {
return true;
}
}
return false;
}
template <typename T>
bool AnyGreaterThan(std::vector<T> elems, T threshold) {
for (const auto& el : elems) {
if (el > threshold) {
return true;
}
}
return false;
}
template <class Iterator>
bool NextCombination(Iterator first, Iterator middle, Iterator last) {
return internal::NextCombination(first, middle, middle, last);
}
template <typename T>
T Sigmoid(const T x, const T alpha) {
return T(1) / (T(1) + exp(-x * alpha));
}
template <typename T>
T ScaleSigmoid(T x, const T alpha, const T x0) {
const T t0 = Sigmoid(-x0, alpha);
const T t1 = Sigmoid(x0, alpha);
x = (Sigmoid(2 * x0 * x - x0, alpha) - t0) / (t1 - t0);
return x;
}
template <typename T1, typename T2>
T2 TruncateCast(const T1 value) {
return std::min(
static_cast<T1>(std::numeric_limits<T2>::max()),
std::max(static_cast<T1>(std::numeric_limits<T2>::min()), value));
}
} // namespace colmap
#endif // COLMAP_SRC_UTIL_MATH_H_
|