1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
/*
* This file is part of the Colobot: Gold Edition source code
* Copyright (C) 2001-2023, Daniel Roux, EPSITEC SA & TerranovaTeam
* http://epsitec.ch; http://colobot.info; http://github.com/colobot
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see http://gnu.org/licenses
*/
/**
* \file math/vector.h
* \brief Vector struct and related functions
*/
#pragma once
#include "math/const.h"
#include "math/func.h"
#include <cmath>
#include <sstream>
// Math module namespace
namespace Math
{
/**
* \struct Vector
* \brief 3D (3x1) vector
*
* Represents a universal 3x1 vector that can be used in OpenGL and DirectX engines.
* Contains the required methods for operating on vectors.
*
* All methods are made inline to maximize optimization.
*
* Unit tests for the structure and related functions are in module: math/test/vector_test.cpp.
*
*/
struct Vector
{
//! X - 1st coord
float x;
//! Y - 2nd coord
float y;
//! Z - 3rd coord
float z;
//! Creates a zero vector (0, 0, 0)
inline Vector()
: x(0.0f)
, y(0.0f)
, z(0.0f)
{}
//! Creates a vector from given values
inline explicit Vector(float _x, float _y, float _z)
: x(_x)
, y(_y)
, z(_z)
{}
//! Loads the zero vector (0, 0, 0)
inline void LoadZero()
{
x = y = z = 0.0f;
}
//! Returns the struct cast to \c float* array; use with care!
inline float* Array()
{
return reinterpret_cast<float*>(this);
}
//! Returns the struct cast to <tt>const float*</tt> array; use with care!
inline const float* Array() const
{
return reinterpret_cast<const float*>(this);
}
//! Returns the vector length
inline float Length() const
{
return sqrtf(x*x + y*y + z*z);
}
//! Normalizes the vector
inline void Normalize()
{
float l = Length();
if (IsZero(l))
return;
x /= l;
y /= l;
z /= l;
}
//! Calculates the cross product with another vector
/**
* \param right right-hand side vector
* \returns the cross product
*/
inline Vector CrossMultiply(const Vector &right) const
{
float px = y * right.z - z * right.y;
float py = z * right.x - x * right.z;
float pz = x * right.y - y * right.x;
return Vector(px, py, pz);
}
//! Calculates the dot product with another vector
/**
* \param right right-hand side vector
* \returns the dot product
*/
inline float DotMultiply(const Vector &right) const
{
return x * right.x + y * right.y + z * right.z;
}
//! Returns the cosine of angle between this and another vector
inline float CosAngle(const Vector &right) const
{
return DotMultiply(right) / (Length() * right.Length());
}
//! Returns angle (in radians) between this and another vector
inline float Angle(const Vector &right) const
{
return acos(CosAngle(right));
}
/* Operators */
//! Returns the inverted vector
inline Vector operator-() const
{
return Vector(-x, -y, -z);
}
//! Adds the given vector
inline const Vector& operator+=(const Vector &right)
{
x += right.x;
y += right.y;
z += right.z;
return *this;
}
//! Adds two vectors
inline friend const Vector operator+(const Vector &left, const Vector &right)
{
return Vector(left.x + right.x, left.y + right.y, left.z + right.z);
}
//! Subtracts the given vector
inline const Vector& operator-=(const Vector &right)
{
x -= right.x;
y -= right.y;
z -= right.z;
return *this;
}
//! Subtracts two vectors
inline friend const Vector operator-(const Vector &left, const Vector &right)
{
return Vector(left.x - right.x, left.y - right.y, left.z - right.z);
}
//! Multiplies by given scalar
inline const Vector& operator*=(const float &right)
{
x *= right;
y *= right;
z *= right;
return *this;
}
//! Multiplies vector by scalar
inline friend const Vector operator*(const float &left, const Vector &right)
{
return Vector(left * right.x, left * right.y, left * right.z);
}
//! Multiplies vector by scalar
inline friend const Vector operator*(const Vector &left, const float &right)
{
return Vector(left.x * right, left.y * right, left.z * right);
}
//! Divides by given scalar
inline const Vector& operator/=(const float &right)
{
x /= right;
y /= right;
z /= right;
return *this;
}
//! Divides vector by scalar
inline friend const Vector operator/(const Vector &left, const float &right)
{
return Vector(left.x / right, left.y / right, left.z / right);
}
//! Returns a string "[x, y, z]"
inline std::string ToString() const
{
std::stringstream s;
s.precision(3);
s << "[" << x << ", " << y << ", " << z << "]";
return s.str();
}
}; // struct Vector
//! Checks if two vectors are equal within given \a tolerance
inline bool VectorsEqual(const Math::Vector &a, const Math::Vector &b, float tolerance = TOLERANCE)
{
return IsEqual(a.x, b.x, tolerance)
&& IsEqual(a.y, b.y, tolerance)
&& IsEqual(a.z, b.z, tolerance);
}
//! Convenience function for getting normalized vector
inline Vector Normalize(const Math::Vector &v)
{
Vector result = v;
result.Normalize();
return result;
}
//! Convenience function for calculating dot product
inline float DotProduct(const Math::Vector &left, const Math::Vector &right)
{
return left.DotMultiply(right);
}
//! Convenience function for calculating cross product
inline Vector CrossProduct(const Math::Vector &left, const Math::Vector &right)
{
return left.CrossMultiply(right);
}
//! Convenience function for calculating angle (in radians) between two vectors
inline float Angle(const Math::Vector &a, const Math::Vector &b)
{
return a.Angle(b);
}
//! Returns the distance between the ends of two vectors
inline float Distance(const Math::Vector &a, const Math::Vector &b)
{
return sqrtf( (a.x-b.x)*(a.x-b.x) +
(a.y-b.y)*(a.y-b.y) +
(a.z-b.z)*(a.z-b.z) );
}
//! Returns the squared distance between the ends of two vectors
inline float DistanceSquared(const Math::Vector &a, const Math::Vector &b)
{
return (a.x-b.x)*(a.x-b.x) +
(a.y-b.y)*(a.y-b.y) +
(a.z-b.z)*(a.z-b.z);
}
//! Clamps the vector \a vec to range between \a min and \a max
inline Vector Clamp(const Vector &vec, const Vector &min, const Vector &max)
{
Vector clamped;
clamped.x = Min(Max(min.x, vec.x), max.x);
clamped.y = Min(Max(min.y, vec.y), max.y);
clamped.z = Min(Max(min.z, vec.z), max.z);
return clamped;
}
} // namespace Math
|