1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
/* factor -- print prime factors of n.
Copyright (C) 1986, 1995-2005, 2007-2010 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Written by Paul Rubin <phr@ocf.berkeley.edu>.
Adapted for GNU, fixed to factor UINT_MAX by Jim Meyering.
Arbitrary-precision code adapted by James Youngman from Torbjörn
Granlund's factorize.c, from GNU MP version 4.2.2.
*/
#include <config.h>
#include <getopt.h>
#include <stdarg.h>
#include <stdio.h>
#include <sys/types.h>
#if HAVE_GMP
# include <gmp.h>
#endif
#include <assert.h>
#include "system.h"
#include "error.h"
#include "quote.h"
#include "readtokens.h"
#include "xstrtol.h"
/* The official name of this program (e.g., no `g' prefix). */
#define PROGRAM_NAME "factor"
#define AUTHORS proper_name ("Paul Rubin")
/* Token delimiters when reading from a file. */
#define DELIM "\n\t "
static bool verbose = false;
#if HAVE_GMP
static mpz_t *factor = NULL;
static size_t nfactors_found = 0;
static size_t nfactors_allocated = 0;
static void
debug (char const *fmt, ...)
{
if (verbose)
{
va_list ap;
va_start (ap, fmt);
vfprintf (stderr, fmt, ap);
va_end (ap);
}
}
static void
emit_factor (mpz_t n)
{
if (nfactors_found == nfactors_allocated)
factor = X2NREALLOC (factor, &nfactors_allocated);
mpz_init (factor[nfactors_found]);
mpz_set (factor[nfactors_found], n);
++nfactors_found;
}
static void
emit_ul_factor (unsigned long int i)
{
mpz_t t;
mpz_init (t);
mpz_set_ui (t, i);
emit_factor (t);
mpz_clear (t);
}
static void
factor_using_division (mpz_t t, unsigned int limit)
{
mpz_t q, r;
unsigned long int f;
int ai;
static unsigned int const add[] = {4, 2, 4, 2, 4, 6, 2, 6};
unsigned int const *addv = add;
unsigned int failures;
debug ("[trial division (%u)] ", limit);
mpz_init (q);
mpz_init (r);
f = mpz_scan1 (t, 0);
mpz_div_2exp (t, t, f);
while (f)
{
emit_ul_factor (2);
--f;
}
for (;;)
{
mpz_tdiv_qr_ui (q, r, t, 3);
if (mpz_cmp_ui (r, 0) != 0)
break;
mpz_set (t, q);
emit_ul_factor (3);
}
for (;;)
{
mpz_tdiv_qr_ui (q, r, t, 5);
if (mpz_cmp_ui (r, 0) != 0)
break;
mpz_set (t, q);
emit_ul_factor (5);
}
failures = 0;
f = 7;
ai = 0;
while (mpz_cmp_ui (t, 1) != 0)
{
mpz_tdiv_qr_ui (q, r, t, f);
if (mpz_cmp_ui (r, 0) != 0)
{
f += addv[ai];
if (mpz_cmp_ui (q, f) < 0)
break;
ai = (ai + 1) & 7;
failures++;
if (failures > limit)
break;
}
else
{
mpz_swap (t, q);
emit_ul_factor (f);
failures = 0;
}
}
mpz_clear (q);
mpz_clear (r);
}
static void
factor_using_pollard_rho (mpz_t n, int a_int)
{
mpz_t x, x1, y, P;
mpz_t a;
mpz_t g;
mpz_t t1, t2;
int k, l, c, i;
debug ("[pollard-rho (%d)] ", a_int);
mpz_init (g);
mpz_init (t1);
mpz_init (t2);
mpz_init_set_si (a, a_int);
mpz_init_set_si (y, 2);
mpz_init_set_si (x, 2);
mpz_init_set_si (x1, 2);
k = 1;
l = 1;
mpz_init_set_ui (P, 1);
c = 0;
while (mpz_cmp_ui (n, 1) != 0)
{
S2:
mpz_mul (x, x, x); mpz_add (x, x, a); mpz_mod (x, x, n);
mpz_sub (t1, x1, x); mpz_mul (t2, P, t1); mpz_mod (P, t2, n);
c++;
if (c == 20)
{
c = 0;
mpz_gcd (g, P, n);
if (mpz_cmp_ui (g, 1) != 0)
goto S4;
mpz_set (y, x);
}
k--;
if (k > 0)
goto S2;
mpz_gcd (g, P, n);
if (mpz_cmp_ui (g, 1) != 0)
goto S4;
mpz_set (x1, x);
k = l;
l = 2 * l;
for (i = 0; i < k; i++)
{
mpz_mul (x, x, x); mpz_add (x, x, a); mpz_mod (x, x, n);
}
mpz_set (y, x);
c = 0;
goto S2;
S4:
do
{
mpz_mul (y, y, y); mpz_add (y, y, a); mpz_mod (y, y, n);
mpz_sub (t1, x1, y); mpz_gcd (g, t1, n);
}
while (mpz_cmp_ui (g, 1) == 0);
mpz_div (n, n, g); /* divide by g, before g is overwritten */
if (!mpz_probab_prime_p (g, 3))
{
do
{
mp_limb_t a_limb;
mpn_random (&a_limb, (mp_size_t) 1);
a_int = (int) a_limb;
}
while (a_int == -2 || a_int == 0);
debug ("[composite factor--restarting pollard-rho] ");
factor_using_pollard_rho (g, a_int);
}
else
{
emit_factor (g);
}
mpz_mod (x, x, n);
mpz_mod (x1, x1, n);
mpz_mod (y, y, n);
if (mpz_probab_prime_p (n, 3))
{
emit_factor (n);
break;
}
}
mpz_clear (g);
mpz_clear (P);
mpz_clear (t2);
mpz_clear (t1);
mpz_clear (a);
mpz_clear (x1);
mpz_clear (x);
mpz_clear (y);
}
#else
static void
debug (char const *fmt ATTRIBUTE_UNUSED, ...)
{
}
#endif
/* The maximum number of factors, including -1, for negative numbers. */
#define MAX_N_FACTORS (sizeof (uintmax_t) * CHAR_BIT)
/* The trial divisor increment wheel. Use it to skip over divisors that
are composites of 2, 3, 5, 7, or 11. The part from WHEEL_START up to
WHEEL_END is reused periodically, while the "lead in" is used to test
for those primes and to jump onto the wheel. For more information, see
http://www.utm.edu/research/primes/glossary/WheelFactorization.html */
#include "wheel-size.h" /* For the definition of WHEEL_SIZE. */
static const unsigned char wheel_tab[] =
{
#include "wheel.h"
};
#define WHEEL_START (wheel_tab + WHEEL_SIZE)
#define WHEEL_END (wheel_tab + ARRAY_CARDINALITY (wheel_tab))
/* FIXME: comment */
static size_t
factor_wheel (uintmax_t n0, size_t max_n_factors, uintmax_t *factors)
{
uintmax_t n = n0, d, q;
size_t n_factors = 0;
unsigned char const *w = wheel_tab;
if (n <= 1)
return n_factors;
/* The exit condition in the following loop is correct because
any time it is tested one of these 3 conditions holds:
(1) d divides n
(2) n is prime
(3) n is composite but has no factors less than d.
If (1) or (2) obviously the right thing happens.
If (3), then since n is composite it is >= d^2. */
d = 2;
do
{
q = n / d;
while (n == q * d)
{
assert (n_factors < max_n_factors);
factors[n_factors++] = d;
n = q;
q = n / d;
}
d += *(w++);
if (w == WHEEL_END)
w = WHEEL_START;
}
while (d <= q);
if (n != 1 || n0 == 1)
{
assert (n_factors < max_n_factors);
factors[n_factors++] = n;
}
return n_factors;
}
/* Single-precision factoring */
static void
print_factors_single (uintmax_t n)
{
uintmax_t factors[MAX_N_FACTORS];
size_t n_factors = factor_wheel (n, MAX_N_FACTORS, factors);
size_t i;
char buf[INT_BUFSIZE_BOUND (uintmax_t)];
printf ("%s:", umaxtostr (n, buf));
for (i = 0; i < n_factors; i++)
printf (" %s", umaxtostr (factors[i], buf));
putchar ('\n');
}
#if HAVE_GMP
static int
mpcompare (const void *av, const void *bv)
{
mpz_t *const *a = av;
mpz_t *const *b = bv;
return mpz_cmp (**a, **b);
}
static void
sort_and_print_factors (void)
{
mpz_t **faclist;
size_t i;
faclist = xcalloc (nfactors_found, sizeof *faclist);
for (i = 0; i < nfactors_found; ++i)
{
faclist[i] = &factor[i];
}
qsort (faclist, nfactors_found, sizeof *faclist, mpcompare);
for (i = 0; i < nfactors_found; ++i)
{
fputc (' ', stdout);
mpz_out_str (stdout, 10, *faclist[i]);
}
putchar ('\n');
free (faclist);
}
static void
free_factors (void)
{
size_t i;
for (i = 0; i < nfactors_found; ++i)
{
mpz_clear (factor[i]);
}
/* Don't actually free factor[] because in the case where we are
reading numbers from stdin, we may be about to use it again. */
nfactors_found = 0;
}
/* Arbitrary-precision factoring */
static void
print_factors_multi (mpz_t t)
{
mpz_out_str (stdout, 10, t);
putchar (':');
if (mpz_sgn (t) != 0)
{
/* Set the trial division limit according to the size of t. */
size_t n_bits = mpz_sizeinbase (t, 2);
unsigned int division_limit = MIN (n_bits, 1000);
division_limit *= division_limit;
factor_using_division (t, division_limit);
if (mpz_cmp_ui (t, 1) != 0)
{
debug ("[is number prime?] ");
if (mpz_probab_prime_p (t, 3))
emit_factor (t);
else
factor_using_pollard_rho (t, 1);
}
}
mpz_clear (t);
sort_and_print_factors ();
free_factors ();
}
#endif
/* Emit the factors of the indicated number. If we have the option of using
either algorithm, we select on the basis of the length of the number.
For longer numbers, we prefer the MP algorithm even if the native algorithm
has enough digits, because the algorithm is better. The turnover point
depends on the value. */
static bool
print_factors (char const *s)
{
uintmax_t n;
strtol_error err = xstrtoumax (s, NULL, 10, &n, "");
#if HAVE_GMP
enum { GMP_TURNOVER_POINT = 100000 };
if (err == LONGINT_OVERFLOW
|| (err == LONGINT_OK && GMP_TURNOVER_POINT <= n))
{
mpz_t t;
mpz_init (t);
if (gmp_sscanf (s, "%Zd", t) == 1)
{
debug ("[%s]", _("using arbitrary-precision arithmetic"));
print_factors_multi (t);
return true;
}
err = LONGINT_INVALID;
}
#endif
switch (err)
{
case LONGINT_OK:
debug ("[%s]", _("using single-precision arithmetic"));
print_factors_single (n);
return true;
case LONGINT_OVERFLOW:
error (0, 0, _("%s is too large"), quote (s));
return false;
default:
error (0, 0, _("%s is not a valid positive integer"), quote (s));
return false;
}
}
enum
{
VERBOSE_OPTION = CHAR_MAX + 1
};
static struct option const long_options[] =
{
{"verbose", no_argument, NULL, VERBOSE_OPTION},
{GETOPT_HELP_OPTION_DECL},
{GETOPT_VERSION_OPTION_DECL},
{NULL, 0, NULL, 0}
};
void
usage (int status)
{
if (status != EXIT_SUCCESS)
fprintf (stderr, _("Try `%s --help' for more information.\n"),
program_name);
else
{
printf (_("\
Usage: %s [NUMBER]...\n\
or: %s OPTION\n\
"),
program_name, program_name);
fputs (_("\
Print the prime factors of each specified integer NUMBER. If none\n\
are specified on the command line, read them from standard input.\n\
\n\
"), stdout);
fputs (HELP_OPTION_DESCRIPTION, stdout);
fputs (VERSION_OPTION_DESCRIPTION, stdout);
emit_ancillary_info ();
}
exit (status);
}
static bool
do_stdin (void)
{
bool ok = true;
token_buffer tokenbuffer;
init_tokenbuffer (&tokenbuffer);
for (;;)
{
size_t token_length = readtoken (stdin, DELIM, sizeof (DELIM) - 1,
&tokenbuffer);
if (token_length == (size_t) -1)
break;
ok &= print_factors (tokenbuffer.buffer);
}
free (tokenbuffer.buffer);
return ok;
}
int
main (int argc, char **argv)
{
bool ok;
int c;
initialize_main (&argc, &argv);
set_program_name (argv[0]);
setlocale (LC_ALL, "");
bindtextdomain (PACKAGE, LOCALEDIR);
textdomain (PACKAGE);
atexit (close_stdout);
while ((c = getopt_long (argc, argv, "", long_options, NULL)) != -1)
{
switch (c)
{
case VERBOSE_OPTION:
verbose = true;
break;
case_GETOPT_HELP_CHAR;
case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);
default:
usage (EXIT_FAILURE);
}
}
if (argc <= optind)
ok = do_stdin ();
else
{
int i;
ok = true;
for (i = optind; i < argc; i++)
if (! print_factors (argv[i]))
ok = false;
}
#if HAVE_GMP
free (factor);
#endif
exit (ok ? EXIT_SUCCESS : EXIT_FAILURE);
}
|