[go: up one dir, main page]

File: critnib.c

package info (click to toggle)
critnib 1.1-2.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 208 kB
  • sloc: ansic: 1,414; sh: 100; makefile: 3
file content (829 lines) | stat: -rw-r--r-- 18,343 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
// SPDX-License-Identifier: BSD-3-Clause
/* Copyright 2018-2019, Intel Corporation */

/*
 * critnib.c -- implementation of critnib tree
 *
 * It offers identity lookup (like a hashmap) and <= lookup (like a search
 * tree).  Unlike some hashing algorithms (cuckoo hash, perfect hashing) the
 * complexity isn't constant, but for data sizes we expect it's several
 * times as fast as cuckoo, and has no "stop the world" cases that would
 * cause latency (ie, better worst case behaviour).
 */

/*
 * STRUCTURE DESCRIPTION
 *
 * Critnib is a hybrid between a radix tree and DJ Bernstein's critbit:
 * it skips nodes for uninteresting radix nodes (ie, ones that would have
 * exactly one child), this requires adding to every node a field that
 * describes the slice (4-bit in our case) that this radix level is for.
 *
 * This implementation also stores each node's path (ie, bits that are
 * common to every key in that subtree) -- this doesn't help with lookups
 * at all (unused in == match, could be reconstructed at no cost in <=
 * after first dive) but simplifies inserts and removes.  If we ever want
 * that piece of memory it's easy to trim it down.
 */

/*
 * CONCURRENCY ISSUES
 *
 * Reads are completely lock-free sync-free, but only almost wait-free:
 * if for some reason a read thread gets pathologically stalled, it will
 * notice the data being stale and restart the work.  In usual cases,
 * the structure having been modified does _not_ cause a restart.
 *
 * Writes could be easily made lock-free as well (with only a cmpxchg
 * sync), but this leads to problems with removes.  A possible solution
 * would be doing removes by overwriting by NULL w/o freeing -- yet this
 * would lead to the structure growing without bounds.  Complex per-node
 * locks would increase concurrency but they slow down individual writes
 * enough that in practice a simple global write lock works faster.
 *
 * Removes are the only operation that can break reads.  The structure
 * can do local RCU well -- the problem being knowing when it's safe to
 * free.  Any synchronization with reads would kill their speed, thus
 * instead we have a remove count.  The grace period is DELETED_LIFE,
 * after which any read will notice staleness and restart its work.
 */
#include <errno.h>
#include <stdbool.h>
#include <stddef.h>

#include "critnib.h"
#include "pmdk-compat.h"

/*
 * A node that has been deleted is left untouched for this many delete
 * cycles.  Reads have guaranteed correctness if they took no longer than
 * DELETED_LIFE concurrent deletes, otherwise they notice something is
 * wrong and restart.  The memory of deleted nodes is never freed to
 * malloc nor their pointers lead anywhere wrong, thus a stale read will
 * (temporarily) get a wrong answer but won't crash.
 *
 * There's no need to count writes as they never interfere with reads.
 *
 * Allowing stale reads (of arbitrarily old writes or of deletes less than
 * DELETED_LIFE old) might sound counterintuitive, but it doesn't affect
 * semantics in any way: the thread could have been stalled just after
 * returning from our code.  Thus, the guarantee is: the result of get() or
 * find_le() is a value that was current at any point between the call
 * start and end.
 */
#define DELETED_LIFE 16

#define SLICE 4
#define NIB ((1UL << SLICE) - 1)
#define SLNODES (1 << SLICE)

typedef uintptr_t word;
typedef unsigned char sh_t;

struct critnib_node {
	/*
	 * path is the part of a tree that's already traversed (be it through
	 * explicit nodes or collapsed links) -- ie, any subtree below has all
	 * those bits set to this value.
	 *
	 * nib is a 4-bit slice that's an index into the node's children.
	 *
	 * shift is the length (in bits) of the part of the key below this node.
	 *
	 *            nib
	 * |XXXXXXXXXX|?|*****|
	 *    path      ^
	 *              +-----+
	 *               shift
	 */
	struct critnib_node *child[SLNODES];
	word path;
	sh_t shift;
};

struct critnib_leaf {
	word key;
	void *value;
};

struct critnib {
	struct critnib_node *root;

	/* pool of freed nodes: singly linked list, next at child[0] */
	struct critnib_node *deleted_node;
	struct critnib_leaf *deleted_leaf;

	/* nodes removed but not yet eligible for reuse */
	struct critnib_node *pending_del_nodes[DELETED_LIFE];
	struct critnib_leaf *pending_del_leaves[DELETED_LIFE];

	uint64_t remove_count;

	os_mutex_t mutex; /* writes/removes */
};

/*
 * atomic load
 */
static void
load(void *src, void *dst)
{
	__atomic_load((word *)src, (word *)dst,
		memory_order_acquire);
}

static void
load64(uint64_t *src, uint64_t *dst)
{
	__atomic_load(src, dst, memory_order_acquire);
}

/*
 * atomic store
 */
static void
store(void *dst, void *src)
{
	__atomic_store_n((word *)dst, (word)src,
		memory_order_release);
}

/*
 * internal: is_leaf -- check tagged pointer for leafness
 */
static inline bool
is_leaf(struct critnib_node *n)
{
	return (word)n & 1;
}

/*
 * internal: to_leaf -- untag a leaf pointer
 */
static inline struct critnib_leaf *
to_leaf(struct critnib_node *n)
{
	return (void *)((word)n & ~1UL);
}

/*
 * internal: path_mask -- return bit mask of a path above a subtree [shift]
 * bits tall
 */
static inline word
path_mask(sh_t shift)
{
	return ~NIB << shift;
}

/*
 * internal: slice_index -- return index of child at the given nib
 */
static inline unsigned
slice_index(word key, sh_t shift)
{
	return (unsigned)((key >> shift) & NIB);
}

/*
 * critnib_new -- allocates a new critnib structure
 */
struct critnib *
critnib_new(void)
{
	struct critnib *c = Zalloc(sizeof(struct critnib));
	if (!c)
		return NULL;

	util_mutex_init(&c->mutex);

	VALGRIND_HG_DRD_DISABLE_CHECKING(&c->root, sizeof(c->root));
	VALGRIND_HG_DRD_DISABLE_CHECKING(&c->remove_count,
					sizeof(c->remove_count));

	return c;
}

/*
 * internal: delete_node -- recursively free (to malloc) a subtree
 */
static void
delete_node(struct critnib_node *__restrict n)
{
	if (!is_leaf(n)) {
		for (int i = 0; i < SLNODES; i++) {
			if (n->child[i])
				delete_node(n->child[i]);
		}

		Free(n);
	} else {
		Free(to_leaf(n));
	}
}

/*
 * critnib_delete -- destroy and free a critnib struct
 */
void
critnib_delete(struct critnib *c)
{
	if (c->root)
		delete_node(c->root);

	util_mutex_destroy(&c->mutex);

	for (struct critnib_node *m = c->deleted_node; m; ) {
		struct critnib_node *mm = m->child[0];
		Free(m);
		m = mm;
	}

	for (struct critnib_leaf *k = c->deleted_leaf; k; ) {
		struct critnib_leaf *kk = k->value;
		Free(k);
		k = kk;
	}

	for (int i = 0; i < DELETED_LIFE; i++) {
		Free(c->pending_del_nodes[i]);
		Free(c->pending_del_leaves[i]);
	}

	Free(c);
}

/*
 * internal: free_node -- free (to internal pool, not malloc) a node.
 *
 * We cannot free them to malloc as a stalled reader thread may still walk
 * through such nodes; it will notice the result being bogus but only after
 * completing the walk, thus we need to ensure any freed nodes still point
 * to within the critnib structure.
 */
static void
free_node(struct critnib *__restrict c, struct critnib_node *__restrict n)
{
	if (!n)
		return;

	ASSERT(!is_leaf(n));
	n->child[0] = c->deleted_node;
	c->deleted_node = n;
}

/*
 * internal: alloc_node -- allocate a node from our pool or from malloc
 */
static struct critnib_node *
alloc_node(struct critnib *__restrict c)
{
	if (!c->deleted_node) {
		struct critnib_node *n = Malloc(sizeof(struct critnib_node));
		if (n == NULL)
			ERR("!Malloc");

		return n;
	}

	struct critnib_node *n = c->deleted_node;

	c->deleted_node = n->child[0];
	VALGRIND_ANNOTATE_NEW_MEMORY(n, sizeof(*n));

	return n;
}

/*
 * internal: free_leaf -- free (to internal pool, not malloc) a leaf.
 *
 * See free_node().
 */
static void
free_leaf(struct critnib *__restrict c, struct critnib_leaf *__restrict k)
{
	if (!k)
		return;

	k->value = c->deleted_leaf;
	c->deleted_leaf = k;
}

/*
 * internal: alloc_leaf -- allocate a leaf from our pool or from malloc
 */
static struct critnib_leaf *
alloc_leaf(struct critnib *__restrict c)
{
	if (!c->deleted_leaf) {
		struct critnib_leaf *k = Malloc(sizeof(struct critnib_leaf));
		if (k == NULL)
			ERR("!Malloc");

		return k;
	}

	struct critnib_leaf *k = c->deleted_leaf;

	c->deleted_leaf = k->value;
	VALGRIND_ANNOTATE_NEW_MEMORY(k, sizeof(*k));

	return k;
}

/*
 * crinib_insert -- write a key:value pair to the critnib structure
 *
 * Returns:
 *  • 0 on success
 *  • EEXIST if such a key already exists
 *  • ENOMEM if we're out of memory
 *
 * Takes a global write lock but doesn't stall any readers.
 */
int
critnib_insert(struct critnib *c, word key, void *value, int update)
{
	util_mutex_lock(&c->mutex);

	struct critnib_leaf *k = alloc_leaf(c);
	if (!k) {
		util_mutex_unlock(&c->mutex);

		return ENOMEM;
	}

	VALGRIND_HG_DRD_DISABLE_CHECKING(k, sizeof(struct critnib_leaf));

	k->key = key;
	k->value = value;

	struct critnib_node *kn = (void *)((word)k | 1);

	struct critnib_node *n = c->root;
	if (!n) {
		c->root = kn;

		util_mutex_unlock(&c->mutex);

		return 0;
	}

	struct critnib_node **parent = &c->root;
	struct critnib_node *prev = c->root;

	while (n && !is_leaf(n) && (key & path_mask(n->shift)) == n->path) {
		prev = n;
		parent = &n->child[slice_index(key, n->shift)];
		n = *parent;
	}

	if (!n) {
		n = prev;
		store(&n->child[slice_index(key, n->shift)], kn);

		util_mutex_unlock(&c->mutex);

		return 0;
	}

	word path = is_leaf(n) ? to_leaf(n)->key : n->path;
	/* Find where the path differs from our key. */
	word at = path ^ key;
	if (!at) {
		ASSERT(is_leaf(n));
		free_leaf(c, to_leaf(kn));

		if (update) {
			to_leaf(n)->value = value;
			util_mutex_unlock(&c->mutex);
			return 0;
		} else {
			util_mutex_unlock(&c->mutex);
			return EEXIST;
		}
	}

	/* and convert that to an index. */
#if __SIZEOF_SIZE_T__ == 8
	sh_t sh = util_mssb_index64(at) & (sh_t)~(SLICE - 1);
#else
	sh_t sh = util_mssb_index32(at) & (sh_t)~(SLICE - 1);
#endif

	struct critnib_node *m = alloc_node(c);
	if (!m) {
		free_leaf(c, to_leaf(kn));

		util_mutex_unlock(&c->mutex);

		return ENOMEM;
	}
	VALGRIND_HG_DRD_DISABLE_CHECKING(m, sizeof(struct critnib_node));

	for (int i = 0; i < SLNODES; i++)
		m->child[i] = NULL;

	m->child[slice_index(key, sh)] = kn;
	m->child[slice_index(path, sh)] = n;
	m->shift = sh;
	m->path = key & path_mask(sh);
	store(parent, m);

	util_mutex_unlock(&c->mutex);

	return 0;
}

/*
 * critnib_remove -- delete a key from the critnib structure, return its value
 */
void *
critnib_remove(struct critnib *c, word key)
{
	struct critnib_leaf *k;
	void *value = NULL;

	util_mutex_lock(&c->mutex);

	struct critnib_node *n = c->root;
	if (!n)
		goto not_found;

	word del = __atomic_fetch_add(&c->remove_count, 1, __ATOMIC_ACQ_REL) % DELETED_LIFE;
	free_node(c, c->pending_del_nodes[del]);
	free_leaf(c, c->pending_del_leaves[del]);
	c->pending_del_nodes[del] = NULL;
	c->pending_del_leaves[del] = NULL;

	if (is_leaf(n)) {
		k = to_leaf(n);
		if (k->key == key) {
			store(&c->root, NULL);
			goto del_leaf;
		}

		goto not_found;
	}
	/*
	 * n and k are a parent:child pair (after the first iteration); k is the
	 * leaf that holds the key we're deleting.
	 */
	struct critnib_node **k_parent = &c->root;
	struct critnib_node **n_parent = &c->root;
	struct critnib_node *kn = n;

	while (!is_leaf(kn)) {
		n_parent = k_parent;
		n = kn;
		k_parent = &kn->child[slice_index(key, kn->shift)];
		kn = *k_parent;

		if (!kn)
			goto not_found;
	}

	k = to_leaf(kn);
	if (k->key != key)
		goto not_found;

	store(&n->child[slice_index(key, n->shift)], NULL);

	/* Remove the node if there's only one remaining child. */
	int ochild = -1;
	for (int i = 0; i < SLNODES; i++) {
		if (n->child[i]) {
			if (ochild != -1)
				goto del_leaf;

			ochild = i;
		}
	}

	ASSERTne(ochild, -1);

	store(n_parent, n->child[ochild]);
	c->pending_del_nodes[del] = n;

del_leaf:
	value = k->value;
	c->pending_del_leaves[del] = k;

not_found:
	util_mutex_unlock(&c->mutex);
	return value;
}

/*
 * critnib_get -- query for a key ("==" match), returns value or NULL
 *
 * Doesn't need a lock but if many deletes happened while our thread was
 * somehow stalled the query is restarted (as freed nodes remain unused only
 * for a grace period).
 *
 * Counterintuitively, it's pointless to return the most current answer,
 * we need only one that was valid at any point after the call started.
 */
void *
critnib_get(struct critnib *c, word key)
{
	uint64_t wrs1, wrs2;
	void *res;

	do {
		struct critnib_node *n;

		load64(&c->remove_count, &wrs1);
		load(&c->root, &n);

		/*
		 * critbit algorithm: dive into the tree, looking at nothing but
		 * each node's critical bit^H^H^Hnibble.  This means we risk
		 * going wrong way if our path is missing, but that's ok...
		 */
		while (n && !is_leaf(n))
			load(&n->child[slice_index(key, n->shift)], &n);

		/* ... as we check it at the end. */
		struct critnib_leaf *k = to_leaf(n);
		res = (n && k->key == key) ? k->value : NULL;
		load64(&c->remove_count, &wrs2);
	} while (wrs1 + DELETED_LIFE <= wrs2);

	return res;
}

/*
 * internal: find_predecessor -- return the rightmost leaf in a subtree
 */
static struct critnib_leaf *
find_predecessor(struct critnib_node *__restrict n)
{
	while (1) {
		int nib;
		for (nib = NIB; nib >= 0; nib--)
			if (n->child[nib])
				break;

		if (nib < 0)
			return NULL;

		n = n->child[nib];
		if (is_leaf(n))
			return to_leaf(n);
	}
}

/*
 * internal: find_le -- recursively search <= in a subtree
 */
static struct critnib_leaf *
find_le(struct critnib_node *__restrict n, word key)
{
	if (!n)
		return NULL;

	if (is_leaf(n))
	{
		struct critnib_leaf *k = to_leaf(n);
		return (k->key <= key) ? k : NULL;
	}

	/*
	 * is our key outside the subtree we're in?
	 *
	 * If we're inside, all bits above the nib will be identical; note
	 * that shift points at the nib's lower rather than upper edge, so it
	 * needs to be masked away as well.
	 */
	if ((key ^ n->path) >> (n->shift) & ~NIB) {
		/*
		 * subtree is too far to the left?
		 * -> its rightmost value is good
		 */
		if (n->path < key)
			return find_predecessor(n);

		/*
		 * subtree is too far to the right?
		 * -> it has nothing of interest to us
		 */
		return NULL;
	}

	unsigned nib = slice_index(key, n->shift);
	/* recursive call: follow the path */
	{
		struct critnib_node *m;
		load(&n->child[nib], &m);
		struct critnib_leaf *k = find_le(m, key);
		if (k)
			return k;
	}

	/*
	 * nothing in that subtree?  We strayed from the path at this point,
	 * thus need to search every subtree to our left in this node.  No
	 * need to dive into any but the first non-null, though.
	 */
	for (; nib > 0; nib--) {
		struct critnib_node *m;
		load(&n->child[nib - 1], &m);
		if (m) {
			n = m;
			if (is_leaf(n))
				return to_leaf(n);

			return find_predecessor(n);
		}
	}

	return NULL;
}

/*
 * critnib_find_le -- query for a key ("<=" match), returns value or NULL
 *
 * Same guarantees as critnib_get().
 */
void *
critnib_find_le(struct critnib *c, word key)
{
	uint64_t wrs1, wrs2;
	void *res;

	do {
		load64(&c->remove_count, &wrs1);
		struct critnib_node *n; /* avoid a subtle TOCTOU */
		load(&c->root, &n);
		struct critnib_leaf *k = n ? find_le(n, key) : NULL;
		res = k ? k->value : NULL;
		load64(&c->remove_count, &wrs2);
	} while (wrs1 + DELETED_LIFE <= wrs2);

	return res;
}

/*
 * internal: find_successor -- return the rightmost leaf in a subtree
 */
static struct critnib_leaf *
find_successor(struct critnib_node *__restrict n)
{
	while (1) {
		int nib;
		for (nib = 0; nib <= NIB; nib++)
			if (n->child[nib])
				break;

		if (nib > NIB)
			return NULL;

		n = n->child[nib];
		if (is_leaf(n))
			return to_leaf(n);
	}
}

/*
 * internal: find_ge -- recursively search >= in a subtree
 */
static struct critnib_leaf *
find_ge(struct critnib_node *__restrict n, word key)
{
	if (!n)
		return NULL;

	if (is_leaf(n))
	{
		struct critnib_leaf *k = to_leaf(n);
		return (k->key >= key) ? k : NULL;
	}

	if ((key ^ n->path) >> (n->shift) & ~NIB) {
		if (n->path > key)
			return find_successor(n);

		return NULL;
	}

	unsigned nib = slice_index(key, n->shift);
	{
		struct critnib_node *m;
		load(&n->child[nib], &m);
		struct critnib_leaf *k = find_ge(m, key);
		if (k)
			return k;
	}

	for (; nib < NIB; nib++) {
		struct critnib_node *m;
		load(&n->child[nib + 1], &m);
		if (m) {
			n = m;
			if (is_leaf(n))
				return to_leaf(n);

			return find_successor(n);
		}
	}

	return NULL;
}

/*
 * critnib_find -- parametrized query, returns 1 if found
 */
int
critnib_find(struct critnib *c, uintptr_t key, enum find_dir_t dir,
	uintptr_t *rkey, void **rvalue)
{
	uint64_t wrs1, wrs2;
	struct critnib_leaf *k;
	uintptr_t _rkey;
	void **_rvalue;

	/* <42 ≡ ≤41 */
	if (dir < -1) {
		if (!key)
			return 0;
		key--;
	} else if (dir > +1) {
		if (key == -1)
			return 0;
		key++;
	}

	do {
		load64(&c->remove_count, &wrs1);
		struct critnib_node *n;
		load(&c->root, &n);

		if (dir < 0)
			k = find_le(n, key);
		else if (dir > 0)
			k = find_ge(n, key);
		else {
			while (n && !is_leaf(n))
				load(&n->child[slice_index(key, n->shift)], &n);

			struct critnib_leaf *kk = to_leaf(n);
			k = (n && kk->key == key) ? kk : NULL;
		}
		if (k) {
			_rkey = k->key;
			_rvalue = k->value;
		}
		load64(&c->remove_count, &wrs2);
	} while (wrs1 + DELETED_LIFE <= wrs2);

	if (k) {
		if (rkey)
			*rkey = _rkey;
		if (rvalue)
		*rvalue = _rvalue;
		return 1;
	}

	return 0;
}

/*
 * critnib_iter -- iterator, [min..max], calls func(key, value, privdata)
 *
 * If func() returns non-zero, the search is aborted.
 */
static int
iter(struct critnib_node *__restrict n, word min, word max,
	int (*func)(word key, void *value, void *privdata), void *privdata)
{
	if (is_leaf(n)) {
		word k = to_leaf(n)->key;
		if (k >= min && k <= max)
			return func(to_leaf(n)->key, to_leaf(n)->value, privdata);
		return 0;
	}

	if (n->path > max)
		return 1;
	if ((n->path | path_mask(n->shift)) < min)
		return 0;

	for (int i = 0; i < SLNODES; i++) {
		struct critnib_node *__restrict m = n->child[i];
		if (m && iter(m, min, max, func, privdata))
			return 1;
	}

	return 0;
}

void
critnib_iter(critnib *c, uintptr_t min, uintptr_t max,
	int (*func)(uintptr_t key, void *value, void *privdata), void *privdata)
{
	util_mutex_lock(&c->mutex);
	if (c->root)
		iter(c->root, min, max, func, privdata);
	util_mutex_unlock(&c->mutex);
}