1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
// ************************************************************************************************
//
// libformfactor: efficient and accurate computation of scattering form factors
//
//! @file ff/Face.cpp
//! @brief Implements class Face
//!
//! @homepage https://jugit.fz-juelich.de/mlz/libformfactor
//! @license GNU General Public License v3 or higher (see LICENSE)
//! @copyright Forschungszentrum Jülich GmbH 2022
//! @author Joachim Wuttke, Scientific Computing Group at MLZ (see CITATION)
//
// ************************************************************************************************
#include "ff/Face.h"
#include "ff/Edge.h"
#include "ff/Factorial.h"
#include <algorithm>
#include <functional>
#include <stdexcept>
#define _USE_MATH_DEFINES
#include <math.h>
namespace {
const double eps = 2e-16;
const double qpa_limit_series = 1e-2;
const int n_limit_series = 20;
constexpr auto ReciprocalFactorialArray = ff_aux::generateReciprocalFactorialArray<171>();
complex_t sinc(const complex_t z) // cardinal sine function, sin(x)/x
{
// This is an exception from the rule that we must not test floating-point numbers for equality.
// For small non-zero arguments, sin(z) returns quite accurately z or z-z^3/6.
// There is no loss of precision in computing sin(z)/z.
// Therefore there is no need for an expensive test like abs(z)<eps.
if (z == complex_t(0., 0.))
return 1.0;
return std::sin(z) / z;
}
std::vector<ff::Edge> precompute_edges_raw(const std::vector<R3>& V, double radius_2d)
{
size_t NV = V.size();
if (!NV)
throw std::runtime_error("Invalid polyhedral face: no edges given");
if (NV < 3)
throw std::runtime_error("Invalid polyhedral face: less than three edges");
// Initialize list of 'edges'.
// Do not create an edge if two vertices are too close to each other.
// TODO This is implemented in a somewhat sloppy way: we just skip an edge if it would
// be too short. This leaves tiny open edges. In a clean implementation, we
// rather should merge adjacent vertices before generating edges.
std::vector<ff::Edge> result;
for (size_t j = 0; j < NV; ++j) {
size_t jj = (j + 1) % NV;
if ((V[j] - V[jj]).mag() < 1e-14 * radius_2d)
continue; // distance too short -> skip this edge
result.emplace_back(V[j], V[jj]);
}
return result;
}
std::vector<ff::Edge> precompute_edges_with_symmetry(const std::vector<R3>& V, bool sym_S2,
const R3& face_center, double radius_2d)
{
// only now deal with inversion symmetry
std::vector<ff::Edge> result = precompute_edges_raw(V, radius_2d);
size_t NE = result.size();
if (sym_S2) {
if (NE & 1)
throw std::runtime_error("Invalid polyhedral face: odd #edges violates symmetry S2");
NE /= 2;
for (size_t j = 0; j < NE; ++j) {
if ((result[j].R() + result[j + NE].R() - 2 * face_center).mag2()
> pow(2e-12 * radius_2d, 2))
throw std::runtime_error(
"Invalid polyhedral face: edge centers violate symmetry S2");
if ((result[j].E() + result[j + NE].E()).mag() > 1e-12 * radius_2d)
throw std::runtime_error(
"Invalid polyhedral face: edge vectors violate symmetry S2");
}
// keep only half of the egdes
result.erase(result.begin() + NE, result.end());
}
return result;
}
R3 precompute_normal(const std::vector<ff::Edge>& edges)
{
size_t NE = edges.size();
if (NE < 3)
throw std::invalid_argument("Face has less than three non-vanishing edges");
R3 result;
for (size_t j = 0; j < NE; ++j)
result += edges[j].E().cross(edges[(j + 1) % NE].E());
return result.unit_or_null();
}
//! Returns distance of figure plane from origin
double precompute_rperp(const std::vector<R3>& V, const R3& normal, double radius_2d)
{
const size_t NV = V.size();
const double estimate = V[0].dot(normal);
double sum1 = 0;
for (size_t j = 1; j < NV; ++j) {
const double x = V[j].dot(normal);
sum1 += (x - estimate);
}
const double rperp = estimate + sum1 / NV;
return rperp;
}
double precompute_area(const std::vector<R3>& V, const R3& normal)
{
double result = 0;
size_t NV = V.size();
// compute m_area
for (size_t j = 0; j < NV; ++j) {
size_t jj = (j + 1) % NV;
result += normal.dot(V[j].cross(V[jj])) / 2;
}
return result;
}
//! Returns radius of circle that contains all vertices.
double precompute_radius(const std::vector<R3>& V)
{
double diameter = 0;
for (size_t j = 0; j < V.size(); ++j)
for (size_t jj = j + 1; jj < V.size(); ++jj)
diameter = std::max(diameter, (V[j] - V[jj]).mag());
return diameter / 2;
}
} // namespace
#ifdef ALGORITHM_DIAGNOSTIC
void ff::PolyhedralDiagnosis::reset()
{
order = 0;
algo = 0;
msg.clear();
};
std::string ff::PolyhedralDiagnosis::message() const
{
std::string result = "algo=" + std::to_string(algo) + ", order=" + std::to_string(order);
if (!msg.empty())
result += ", msg:\n" + msg;
return result;
}
bool ff::PolyhedralDiagnosis::operator==(const PolyhedralDiagnosis& other) const
{
return order == other.order && algo == other.algo;
}
bool ff::PolyhedralDiagnosis::operator!=(const PolyhedralDiagnosis& other) const
{
return !(*this == other);
}
#endif
// ************************************************************************************************
// PolyhedralFace implementation
// ************************************************************************************************
//! Sets internal variables for given vertex chain.
//! @param V oriented vertex list
//! @param _sym_S2 true if face has a perpedicular two-fold symmetry axis
ff::Face::Face(const std::vector<R3>& V, bool sym_S2)
: m_sym_S2(sym_S2)
, m_radius_2d(precompute_radius(V))
, m_normal(precompute_normal(precompute_edges_raw(V, m_radius_2d)))
, m_rperp(precompute_rperp(V, m_normal, m_radius_2d))
, m_area(precompute_area(V, m_normal))
, m_edges(precompute_edges_with_symmetry(V, m_sym_S2, m_rperp * m_normal, m_radius_2d))
{
}
ff::Face::~Face() = default;
const std::vector<ff::Edge>& ff::Face::edges() const
{
return m_edges;
}
R3 ff::Face::center_of_polygon() const
{
if (m_sym_S2)
return m_normal * m_rperp;
const R3 scaled_normal = (2 / (3. * m_area)) * m_normal;
R3 meanR;
for (const Edge& e : m_edges)
meanR += e.R();
meanR /= m_edges.size();
R3 result = meanR;
for (const Edge& e : m_edges)
result += (e.R() - meanR).cross(e.E()).dot(scaled_normal) * (e.R() - meanR);
return result;
}
//! Sets qperp and qpa according to argument q and to this polygon's normal.
void ff::Face::decompose_q(C3 q, complex_t& qperp, C3& qpa) const
{
qperp = m_normal.dot(q);
qpa = q - qperp * m_normal;
// improve numeric accuracy:
qpa -= m_normal.dot(qpa) * m_normal;
if (qpa.mag() < eps * std::abs(qperp))
qpa = C3(0., 0., 0.);
}
//! Returns core contribution to f_n
complex_t ff::Face::ff_n_core(int m, C3 qpa, complex_t qperp) const
{
const C3 prevec = 2. * m_normal.cross(qpa); // complex conjugation not here but in .dot
complex_t result = 0;
const complex_t qrperp = qperp * m_rperp;
for (size_t i = 0; i < m_edges.size(); ++i) {
const Edge& e = m_edges[i];
const complex_t vfac = prevec.dot(e.E());
const complex_t tmp = e.contrib(m + 1, qpa, qrperp);
result += vfac * tmp;
// std::cout << std::scientific << std::showpos << std::setprecision(16)
// << "DBX ff_n_core " << m << " " << vfac << " " << tmp
// << " term=" << vfac * tmp << " sum=" << result << "\n";
}
return result;
}
//! Returns contribution qn*f_n [of order q^(n+1)] from this face to the polyhedral form factor.
complex_t ff::Face::ff_n(int n, C3 q) const
{
complex_t qn = q.dot(m_normal); // conj(q)*normal (dot is antilinear in 'this' argument)
if (std::abs(qn) < eps * q.mag())
return 0.;
complex_t qperp;
C3 qpa;
decompose_q(q, qperp, qpa);
double qpa_mag2 = qpa.mag2();
if (qpa_mag2 == 0.)
return qn * pow(qperp * m_rperp, n) * m_area * ReciprocalFactorialArray[n];
if (m_sym_S2)
return qn * (ff_n_core(n, qpa, qperp) + ff_n_core(n, -qpa, qperp)) / qpa_mag2;
complex_t tmp = ff_n_core(n, qpa, qperp);
// std::cout << "DBX ff_n " << n << " " << qn << " " << tmp << " " << qpa_mag2 << "\n";
return qn * tmp / qpa_mag2;
}
//! Returns sum of n>=1 terms of qpa expansion of 2d form factor
complex_t ff::Face::expansion(complex_t fac_even, complex_t fac_odd, C3 qpa, double abslevel) const
{
#ifdef ALGORITHM_DIAGNOSTIC
polyhedralDiagnosis.algo += 1;
#endif
complex_t sum = 0;
complex_t n_fac = I;
int count_return_condition = 0;
for (int n = 1; n < n_limit_series; ++n) {
#ifdef ALGORITHM_DIAGNOSTIC
polyhedralDiagnosis.order = std::max(polyhedralDiagnosis.order, n);
#endif
complex_t term = n_fac * (n & 1 ? fac_odd : fac_even) * ff_n_core(n, qpa, 0) / qpa.mag2();
// std::cout << std::setprecision(16) << " sum=" << sum << " +term=" << term << "\n";
sum += term;
if (std::abs(term) <= eps * std::abs(sum) || std::abs(sum) < eps * abslevel)
++count_return_condition;
else
count_return_condition = 0;
if (count_return_condition > 2)
return sum; // regular exit
n_fac = mul_I(n_fac);
}
throw std::runtime_error("Numeric error in polyhedral face: series f(q_pa) not converged");
}
//! Returns core contribution to analytic 2d form factor.
complex_t ff::Face::edge_sum_ff(C3 q, C3 qpa, bool sym_Ci) const
{
C3 prevec = m_normal.cross(qpa); // complex conjugation will take place in .dot
complex_t sum = 0;
complex_t vfacsum = 0;
for (size_t i = 0; i < m_edges.size(); ++i) {
const ff::Edge& e = m_edges[i];
complex_t qE = e.qE(qpa);
complex_t qR = e.qR(qpa);
complex_t Rfac = m_sym_S2 ? sin(qR) : (sym_Ci ? cos(e.qR(q)) : exp_I(qR));
complex_t vfac;
if (m_sym_S2 || i < m_edges.size() - 1) {
vfac = prevec.dot(e.E());
vfacsum += vfac;
} else {
vfac = -vfacsum; // to improve numeric accuracy: qcE_J = - sum_{j=0}^{J-1} qcE_j
}
complex_t term = vfac * sinc(qE) * Rfac;
sum += term;
// std::cout << std::scientific << std::showpos << std::setprecision(16)
// << " sum=" << sum << " term=" << term << " vf=" << vfac << " qE=" << qE
// << " qR=" << qR << " sinc=" << sinc(qE) << " Rfac=" << Rfac << "\n";
}
return sum;
}
//! Returns the contribution ff(q) of this face to the polyhedral form factor.
complex_t ff::Face::ff(C3 q, bool sym_Ci) const
{
complex_t qperp;
C3 qpa;
decompose_q(q, qperp, qpa);
double qpa_red = m_radius_2d * qpa.mag();
complex_t qr_perp = qperp * m_rperp;
complex_t ff0 = (sym_Ci ? 2. * I * sin(qr_perp) : exp_I(qr_perp)) * m_area;
if (qpa_red == 0)
return ff0;
if (qpa_red < qpa_limit_series && !m_sym_S2) {
// summation of power series
complex_t fac_even;
complex_t fac_odd;
if (sym_Ci) {
fac_even = 2. * mul_I(sin(qr_perp));
fac_odd = 2. * cos(qr_perp);
} else {
fac_even = exp_I(qr_perp);
fac_odd = fac_even;
}
return ff0 + expansion(fac_even, fac_odd, qpa, std::abs(ff0));
}
// direct evaluation of analytic formula
complex_t prefac;
if (m_sym_S2)
prefac = sym_Ci ? -8. * sin(qr_perp) : 4. * mul_I(exp_I(qr_perp));
else
prefac = sym_Ci ? 4. : 2. * exp_I(qr_perp);
// std::cout << " qrperp=" << qr_perp << " => prefac=" << prefac << "\n";
return prefac * edge_sum_ff(q, qpa, sym_Ci) / mul_I(qpa.mag2());
}
//! Two-dimensional form factor, for use in prism, from power series.
complex_t ff::Face::ff_2D_expanded(C3 qpa) const
{
return m_area + expansion(1., 1., qpa, std::abs(m_area));
}
//! Two-dimensional form factor, for use in prism, from sum over edge form factors.
complex_t ff::Face::ff_2D_direct(C3 qpa) const
{
return (m_sym_S2 ? 4. : 2. / I) * edge_sum_ff(qpa, qpa, false) / qpa.mag2();
}
//! Returns the two-dimensional form factor of this face, for use in a prism.
complex_t ff::Face::ff_2D(C3 qpa) const
{
if (std::abs(qpa.dot(m_normal)) > eps * qpa.mag())
throw std::runtime_error(
"Numeric error in polyhedral formfactor: ff_2D called with perpendicular q component");
double qpa_red = m_radius_2d * qpa.mag();
if (qpa_red == 0)
return m_area;
if (qpa_red < qpa_limit_series && !m_sym_S2)
return ff_2D_expanded(qpa);
return ff_2D_direct(qpa);
}
//! Throws if deviation from inversion symmetry is detected. Does not check vertices.
void ff::Face::assert_Ci(const Face& other) const
{
if (std::abs(m_rperp - other.m_rperp) > std::abs(1e-15 * (m_rperp + other.m_rperp)))
throw std::runtime_error(
"Invalid polyhedron: faces with different distance from origin violate symmetry Ci");
if (std::abs(m_area - other.m_area) > 1e-15 * (m_area + other.m_area))
throw std::runtime_error(
"Invalid polyhedron: faces with different areas violate symmetry Ci");
if ((m_normal + other.m_normal).mag() > 1e-14)
throw std::runtime_error(
"Invalid polyhedron: faces do not have opposite orientation, violating symmetry Ci");
}
//! Returns true if point v, is located inside the infinite extruded volume defined by this polygon.
bool ff::Face::is_inside(const R3& v) const
{
int n_rightOf = 0; // number of occasions v is located right of the edge
for (const Edge& edge : m_edges) {
R3 p = v - edge.R();
double o = (m_normal.cross(edge.E())).dot(p);
if (o >= 0)
n_rightOf++;
else if (o < 0)
n_rightOf--;
if (m_sym_S2) {
p = v + edge.R();
double o = (m_normal.cross(-edge.E())).dot(p);
if (o >= 0)
n_rightOf++;
else if (o < 0)
n_rightOf--;
}
}
int edge_size = m_sym_S2 ? m_edges.size() * 2 : m_edges.size();
return abs(n_rightOf) == edge_size;
}
|