[go: up one dir, main page]

File: Face.cpp

package info (click to toggle)
libformfactor 0.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,288 kB
  • sloc: cpp: 17,289; python: 382; makefile: 15
file content (414 lines) | stat: -rw-r--r-- 14,655 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
//  ************************************************************************************************
//
//  libformfactor: efficient and accurate computation of scattering form factors
//
//! @file      ff/Face.cpp
//! @brief     Implements class Face
//!
//! @homepage  https://jugit.fz-juelich.de/mlz/libformfactor
//! @license   GNU General Public License v3 or higher (see LICENSE)
//! @copyright Forschungszentrum Jülich GmbH 2022
//! @author    Joachim Wuttke, Scientific Computing Group at MLZ (see CITATION)
//
//  ************************************************************************************************

#include "ff/Face.h"
#include "ff/Edge.h"
#include "ff/Factorial.h"
#include <algorithm>
#include <functional>
#include <stdexcept>
#define _USE_MATH_DEFINES
#include <math.h>

namespace {

const double eps = 2e-16;
const double qpa_limit_series = 1e-2;
const int n_limit_series = 20;

constexpr auto ReciprocalFactorialArray = ff_aux::generateReciprocalFactorialArray<171>();

complex_t sinc(const complex_t z) // cardinal sine function, sin(x)/x
{
    // This is an exception from the rule that we must not test floating-point numbers for equality.
    // For small non-zero arguments, sin(z) returns quite accurately z or z-z^3/6.
    // There is no loss of precision in computing sin(z)/z.
    // Therefore there is no need for an expensive test like abs(z)<eps.
    if (z == complex_t(0., 0.))
        return 1.0;
    return std::sin(z) / z;
}

std::vector<ff::Edge> precompute_edges_raw(const std::vector<R3>& V, double radius_2d)
{
    size_t NV = V.size();
    if (!NV)
        throw std::runtime_error("Invalid polyhedral face: no edges given");
    if (NV < 3)
        throw std::runtime_error("Invalid polyhedral face: less than three edges");
    // Initialize list of 'edges'.
    // Do not create an edge if two vertices are too close to each other.
    // TODO This is implemented in a somewhat sloppy way: we just skip an edge if it would
    //      be too short. This leaves tiny open edges. In a clean implementation, we
    //      rather should merge adjacent vertices before generating edges.
    std::vector<ff::Edge> result;
    for (size_t j = 0; j < NV; ++j) {
        size_t jj = (j + 1) % NV;
        if ((V[j] - V[jj]).mag() < 1e-14 * radius_2d)
            continue; // distance too short -> skip this edge
        result.emplace_back(V[j], V[jj]);
    }
    return result;
}

std::vector<ff::Edge> precompute_edges_with_symmetry(const std::vector<R3>& V, bool sym_S2,
                                                     const R3& face_center, double radius_2d)
{
    // only now deal with inversion symmetry
    std::vector<ff::Edge> result = precompute_edges_raw(V, radius_2d);
    size_t NE = result.size();
    if (sym_S2) {
        if (NE & 1)
            throw std::runtime_error("Invalid polyhedral face: odd #edges violates symmetry S2");
        NE /= 2;
        for (size_t j = 0; j < NE; ++j) {
            if ((result[j].R() + result[j + NE].R() - 2 * face_center).mag2()
                > pow(2e-12 * radius_2d, 2))
                throw std::runtime_error(
                    "Invalid polyhedral face: edge centers violate symmetry S2");
            if ((result[j].E() + result[j + NE].E()).mag() > 1e-12 * radius_2d)
                throw std::runtime_error(
                    "Invalid polyhedral face: edge vectors violate symmetry S2");
        }
        // keep only half of the egdes
        result.erase(result.begin() + NE, result.end());
    }
    return result;
}

R3 precompute_normal(const std::vector<ff::Edge>& edges)
{
    size_t NE = edges.size();
    if (NE < 3)
        throw std::invalid_argument("Face has less than three non-vanishing edges");
    R3 result;
    for (size_t j = 0; j < NE; ++j)
        result += edges[j].E().cross(edges[(j + 1) % NE].E());
    return result.unit_or_null();
}

//! Returns distance of figure plane from origin
double precompute_rperp(const std::vector<R3>& V, const R3& normal, double radius_2d)
{
    const size_t NV = V.size();
    const double estimate = V[0].dot(normal);
    double sum1 = 0;
    for (size_t j = 1; j < NV; ++j) {
        const double x = V[j].dot(normal);
        sum1 += (x - estimate);
    }
    const double rperp = estimate + sum1 / NV;
    return rperp;
}

double precompute_area(const std::vector<R3>& V, const R3& normal)
{
    double result = 0;
    size_t NV = V.size();
    // compute m_area
    for (size_t j = 0; j < NV; ++j) {
        size_t jj = (j + 1) % NV;
        result += normal.dot(V[j].cross(V[jj])) / 2;
    }
    return result;
}

//! Returns radius of circle that contains all vertices.
double precompute_radius(const std::vector<R3>& V)
{
    double diameter = 0;
    for (size_t j = 0; j < V.size(); ++j)
        for (size_t jj = j + 1; jj < V.size(); ++jj)
            diameter = std::max(diameter, (V[j] - V[jj]).mag());
    return diameter / 2;
}

} // namespace


#ifdef ALGORITHM_DIAGNOSTIC
void ff::PolyhedralDiagnosis::reset()
{
    order = 0;
    algo = 0;
    msg.clear();
};
std::string ff::PolyhedralDiagnosis::message() const
{
    std::string result = "algo=" + std::to_string(algo) + ", order=" + std::to_string(order);
    if (!msg.empty())
        result += ", msg:\n" + msg;
    return result;
}
bool ff::PolyhedralDiagnosis::operator==(const PolyhedralDiagnosis& other) const
{
    return order == other.order && algo == other.algo;
}
bool ff::PolyhedralDiagnosis::operator!=(const PolyhedralDiagnosis& other) const
{
    return !(*this == other);
}
#endif

//  ************************************************************************************************
//  PolyhedralFace implementation
//  ************************************************************************************************

//! Sets internal variables for given vertex chain.

//! @param V oriented vertex list
//! @param _sym_S2 true if face has a perpedicular two-fold symmetry axis

ff::Face::Face(const std::vector<R3>& V, bool sym_S2)
    : m_sym_S2(sym_S2)
    , m_radius_2d(precompute_radius(V))
    , m_normal(precompute_normal(precompute_edges_raw(V, m_radius_2d)))
    , m_rperp(precompute_rperp(V, m_normal, m_radius_2d))
    , m_area(precompute_area(V, m_normal))
    , m_edges(precompute_edges_with_symmetry(V, m_sym_S2, m_rperp * m_normal, m_radius_2d))
{
}

ff::Face::~Face() = default;

const std::vector<ff::Edge>& ff::Face::edges() const
{
    return m_edges;
}

R3 ff::Face::center_of_polygon() const
{
    if (m_sym_S2)
        return m_normal * m_rperp;
    const R3 scaled_normal = (2 / (3. * m_area)) * m_normal;
    R3 meanR;
    for (const Edge& e : m_edges)
        meanR += e.R();
    meanR /= m_edges.size();
    R3 result = meanR;
    for (const Edge& e : m_edges)
        result += (e.R() - meanR).cross(e.E()).dot(scaled_normal) * (e.R() - meanR);
    return result;
}

//! Sets qperp and qpa according to argument q and to this polygon's normal.

void ff::Face::decompose_q(C3 q, complex_t& qperp, C3& qpa) const
{
    qperp = m_normal.dot(q);
    qpa = q - qperp * m_normal;
    // improve numeric accuracy:
    qpa -= m_normal.dot(qpa) * m_normal;
    if (qpa.mag() < eps * std::abs(qperp))
        qpa = C3(0., 0., 0.);
}

//! Returns core contribution to f_n

complex_t ff::Face::ff_n_core(int m, C3 qpa, complex_t qperp) const
{
    const C3 prevec = 2. * m_normal.cross(qpa); // complex conjugation not here but in .dot
    complex_t result = 0;
    const complex_t qrperp = qperp * m_rperp;
    for (size_t i = 0; i < m_edges.size(); ++i) {
        const Edge& e = m_edges[i];
        const complex_t vfac = prevec.dot(e.E());
        const complex_t tmp = e.contrib(m + 1, qpa, qrperp);
        result += vfac * tmp;
        //     std::cout << std::scientific << std::showpos << std::setprecision(16)
        //               << "DBX ff_n_core " << m << " " << vfac << " " << tmp
        //               << " term=" << vfac * tmp << " sum=" << result << "\n";
    }
    return result;
}

//! Returns contribution qn*f_n [of order q^(n+1)] from this face to the polyhedral form factor.

complex_t ff::Face::ff_n(int n, C3 q) const
{
    complex_t qn = q.dot(m_normal); // conj(q)*normal (dot is antilinear in 'this' argument)
    if (std::abs(qn) < eps * q.mag())
        return 0.;
    complex_t qperp;
    C3 qpa;
    decompose_q(q, qperp, qpa);
    double qpa_mag2 = qpa.mag2();
    if (qpa_mag2 == 0.)
        return qn * pow(qperp * m_rperp, n) * m_area * ReciprocalFactorialArray[n];
    if (m_sym_S2)
        return qn * (ff_n_core(n, qpa, qperp) + ff_n_core(n, -qpa, qperp)) / qpa_mag2;
    complex_t tmp = ff_n_core(n, qpa, qperp);
    // std::cout << "DBX ff_n " << n << " " << qn << " " << tmp << " " << qpa_mag2 << "\n";
    return qn * tmp / qpa_mag2;
}

//! Returns sum of n>=1 terms of qpa expansion of 2d form factor

complex_t ff::Face::expansion(complex_t fac_even, complex_t fac_odd, C3 qpa, double abslevel) const
{
#ifdef ALGORITHM_DIAGNOSTIC
    polyhedralDiagnosis.algo += 1;
#endif
    complex_t sum = 0;
    complex_t n_fac = I;
    int count_return_condition = 0;
    for (int n = 1; n < n_limit_series; ++n) {
#ifdef ALGORITHM_DIAGNOSTIC
        polyhedralDiagnosis.order = std::max(polyhedralDiagnosis.order, n);
#endif
        complex_t term = n_fac * (n & 1 ? fac_odd : fac_even) * ff_n_core(n, qpa, 0) / qpa.mag2();
        // std::cout << std::setprecision(16) << "    sum=" << sum << " +term=" << term << "\n";
        sum += term;
        if (std::abs(term) <= eps * std::abs(sum) || std::abs(sum) < eps * abslevel)
            ++count_return_condition;
        else
            count_return_condition = 0;
        if (count_return_condition > 2)
            return sum; // regular exit
        n_fac = mul_I(n_fac);
    }
    throw std::runtime_error("Numeric error in polyhedral face: series f(q_pa) not converged");
}

//! Returns core contribution to analytic 2d form factor.

complex_t ff::Face::edge_sum_ff(C3 q, C3 qpa, bool sym_Ci) const
{
    C3 prevec = m_normal.cross(qpa); // complex conjugation will take place in .dot
    complex_t sum = 0;
    complex_t vfacsum = 0;
    for (size_t i = 0; i < m_edges.size(); ++i) {
        const ff::Edge& e = m_edges[i];
        complex_t qE = e.qE(qpa);
        complex_t qR = e.qR(qpa);
        complex_t Rfac = m_sym_S2 ? sin(qR) : (sym_Ci ? cos(e.qR(q)) : exp_I(qR));
        complex_t vfac;
        if (m_sym_S2 || i < m_edges.size() - 1) {
            vfac = prevec.dot(e.E());
            vfacsum += vfac;
        } else {
            vfac = -vfacsum; // to improve numeric accuracy: qcE_J = - sum_{j=0}^{J-1} qcE_j
        }
        complex_t term = vfac * sinc(qE) * Rfac;
        sum += term;
        //    std::cout << std::scientific << std::showpos << std::setprecision(16)
        //              << "    sum=" << sum << " term=" << term << " vf=" << vfac << " qE=" << qE
        //              << " qR=" << qR << " sinc=" << sinc(qE) << " Rfac=" << Rfac << "\n";
    }
    return sum;
}

//! Returns the contribution ff(q) of this face to the polyhedral form factor.

complex_t ff::Face::ff(C3 q, bool sym_Ci) const
{
    complex_t qperp;
    C3 qpa;
    decompose_q(q, qperp, qpa);
    double qpa_red = m_radius_2d * qpa.mag();
    complex_t qr_perp = qperp * m_rperp;
    complex_t ff0 = (sym_Ci ? 2. * I * sin(qr_perp) : exp_I(qr_perp)) * m_area;
    if (qpa_red == 0)
        return ff0;
    if (qpa_red < qpa_limit_series && !m_sym_S2) {
        // summation of power series
        complex_t fac_even;
        complex_t fac_odd;
        if (sym_Ci) {
            fac_even = 2. * mul_I(sin(qr_perp));
            fac_odd = 2. * cos(qr_perp);
        } else {
            fac_even = exp_I(qr_perp);
            fac_odd = fac_even;
        }
        return ff0 + expansion(fac_even, fac_odd, qpa, std::abs(ff0));
    }
    // direct evaluation of analytic formula
    complex_t prefac;
    if (m_sym_S2)
        prefac = sym_Ci ? -8. * sin(qr_perp) : 4. * mul_I(exp_I(qr_perp));
    else
        prefac = sym_Ci ? 4. : 2. * exp_I(qr_perp);
    // std::cout << "       qrperp=" << qr_perp << " => prefac=" << prefac << "\n";
    return prefac * edge_sum_ff(q, qpa, sym_Ci) / mul_I(qpa.mag2());
}

//! Two-dimensional form factor, for use in prism, from power series.

complex_t ff::Face::ff_2D_expanded(C3 qpa) const
{
    return m_area + expansion(1., 1., qpa, std::abs(m_area));
}

//! Two-dimensional form factor, for use in prism, from sum over edge form factors.

complex_t ff::Face::ff_2D_direct(C3 qpa) const
{
    return (m_sym_S2 ? 4. : 2. / I) * edge_sum_ff(qpa, qpa, false) / qpa.mag2();
}

//! Returns the two-dimensional form factor of this face, for use in a prism.

complex_t ff::Face::ff_2D(C3 qpa) const
{
    if (std::abs(qpa.dot(m_normal)) > eps * qpa.mag())
        throw std::runtime_error(
            "Numeric error in polyhedral formfactor: ff_2D called with perpendicular q component");
    double qpa_red = m_radius_2d * qpa.mag();
    if (qpa_red == 0)
        return m_area;
    if (qpa_red < qpa_limit_series && !m_sym_S2)
        return ff_2D_expanded(qpa);
    return ff_2D_direct(qpa);
}

//! Throws if deviation from inversion symmetry is detected. Does not check vertices.

void ff::Face::assert_Ci(const Face& other) const
{
    if (std::abs(m_rperp - other.m_rperp) > std::abs(1e-15 * (m_rperp + other.m_rperp)))
        throw std::runtime_error(
            "Invalid polyhedron: faces with different distance from origin violate symmetry Ci");
    if (std::abs(m_area - other.m_area) > 1e-15 * (m_area + other.m_area))
        throw std::runtime_error(
            "Invalid polyhedron: faces with different areas violate symmetry Ci");
    if ((m_normal + other.m_normal).mag() > 1e-14)
        throw std::runtime_error(
            "Invalid polyhedron: faces do not have opposite orientation, violating symmetry Ci");
}

//! Returns true if point v, is located inside the infinite extruded volume defined by this polygon.

bool ff::Face::is_inside(const R3& v) const
{
    int n_rightOf = 0; // number of occasions v is located right of the edge
    for (const Edge& edge : m_edges) {
        R3 p = v - edge.R();
        double o = (m_normal.cross(edge.E())).dot(p);
        if (o >= 0)
            n_rightOf++;
        else if (o < 0)
            n_rightOf--;
        if (m_sym_S2) {
            p = v + edge.R();
            double o = (m_normal.cross(-edge.E())).dot(p);
            if (o >= 0)
                n_rightOf++;
            else if (o < 0)
                n_rightOf--;
        }
    }
    int edge_size = m_sym_S2 ? m_edges.size() * 2 : m_edges.size();
    return abs(n_rightOf) == edge_size;
}