1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
// ************************************************************************************************
//
// libformfactor: efficient and accurate computation of scattering form factors
//
//! @file ff/Polyhedron.cpp
//! @brief Implements class Polyhedron.
//!
//! @homepage https://jugit.fz-juelich.de/mlz/libformfactor
//! @license GNU General Public License v3 or higher (see LICENSE)
//! @copyright Forschungszentrum Jülich GmbH 2022
//! @author Joachim Wuttke, Scientific Computing Group at MLZ (see CITATION)
//
// ************************************************************************************************
//! The mathematics implemented here is described in full detail in a paper
//! by Joachim Wuttke, entitled
//! "Numerically stable form factor of any polygon and polyhedron"
#include "ff/Polyhedron.h"
#include "ff/Edge.h"
#include "ff/EulerOperations.h"
#include "ff/Face.h"
#include "ff/Topology.h"
#include <algorithm>
#include <fstream>
#include <stdexcept>
#define _USE_MATH_DEFINES
#include <math.h>
#ifdef ALGORITHM_DIAGNOSTIC_LEVEL2
#include <boost/format.hpp>
#endif
namespace {
const double eps = 2e-16;
const double q_limit_series = 1e-2;
const int n_limit_series = 20;
std::vector<R3> shift_vertices(const std::vector<R3>& vertices, const R3& location)
{
std::vector<R3> result;
result.reserve(vertices.size());
for (const R3 v : vertices)
result.emplace_back(v + location);
return result;
}
std::vector<ff::Face> precompute_faces(const ff::Topology& topology,
const std::vector<R3>& vertices)
{
if (topology.faces.size() < 4)
throw std::runtime_error("Invalid polyhedron: less than four non-vanishing faces");
if (topology.symmetry_Ci) {
std::vector<ff::Face> faces;
size_t N = topology.faces.size();
if (N & 1)
throw std::runtime_error("Invalid polyhedron: odd #faces violates symmetry Ci");
for (size_t k = 0; k < N / 2; ++k) {
const ff::FacialTopology& tf = topology.faces[k];
std::vector<R3> corners; // of one face
corners.reserve(N / 2);
for (int i : topology.faces[k].vertexIndices)
corners.push_back(vertices[i]);
faces.emplace_back(corners, tf.symmetry_S2);
// check against counterface
const ff::FacialTopology& tfc = topology.faces[N - 1 - k];
corners.clear();
corners.reserve(N / 2);
for (int i : tfc.vertexIndices)
corners.push_back(vertices[i]);
ff::Face counterface(corners, tf.symmetry_S2);
faces[k].assert_Ci(counterface);
}
return faces;
}
std::vector<ff::Face> faces;
for (const ff::FacialTopology& tf : topology.faces) {
std::vector<R3> corners; // of one face
for (int i : tf.vertexIndices)
corners.push_back(vertices[i]);
faces.emplace_back(corners, tf.symmetry_S2);
}
return faces;
}
double precompute_radius(const std::vector<R3>& vertices)
{
return std::max_element(vertices.begin(), vertices.end(),
[](const R3& a, const R3& b) { return a.mag() < b.mag(); })
->mag();
}
double precompute_volume(const std::vector<ff::Face>& faces, bool symmetry_Ci)
{
double volume = 0;
for (const ff::Face& Gk : faces)
volume += Gk.pyramidalVolume();
if (symmetry_Ci)
volume = 2 * volume;
return volume;
}
//! Returns true if a ray defined by r0 -> r1 passes through a plane defined by its
//! origin p0 and normal vector n.
bool ray_intersects_plane(R3 r0, R3 r1, R3 p0, R3 n)
{
return (r1 - r0).dot(n) != 0;
}
//! Returns the intersection point of a ray with a plane.
R3 ray_plane_intersection(R3 r0, R3 r1, R3 p0, R3 n)
{
if ((r1 - r0).dot(n) == 0)
throw std::runtime_error("Invalid call to libformfactor, function ray_plane_intersection: "
"ray is parallel to plane");
double d = (p0 - r0).dot(n) / ((r1 - r0).dot(n)); // projection onto ray
return r0 + d * (r1 - r0);
}
//! Returns weather i lies in the positive eay extension defined by r0 -> r1
bool intersects_in_positive_halfspace(const R3& r0, const R3& r1, const R3& i)
{
return (r1 - r0).dot(i - r0) > 0;
}
//! Returns the number of faces crossed by the ray r0 -> r1. Set sym to true to mirror the faces
int ray_crossings(const R3& r0, const R3& r1, const std::vector<ff::Face>& faces, bool sym)
{
int crossings = 0;
int sign = sym ? -1 : 1;
for (const ff::Face& polygon : faces) {
const R3 origin = sym ? -polygon.edges()[0].R() : polygon.edges()[0].R();
if (!ray_intersects_plane(r0, r1, origin, (sign * polygon.normal())))
continue;
const R3 i = ray_plane_intersection(r0, r1, origin, (sign * polygon.normal()));
if (!intersects_in_positive_halfspace(r0, r1, i))
continue;
if (polygon.is_inside(i))
crossings++;
}
return crossings;
}
//! Uses the fibonacci sphere algorithm to evenly generate points on as sphere
//! See: https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere
//! Or for more details: González, https://doi.org/10.1007/s11004-009-9257-x (2010)
std::vector<R3> fibonacci_sphere(const R3& origin, int nsamples)
{
static const double phi = M_PI * (3.0 - sqrt(5.0));
std::vector<R3> result(nsamples);
for (int i = 0; i < nsamples; i++) {
const double y = 1 - 1 * ((double)i / (nsamples - 1)) * 2;
const double radius = sqrt(1 - y * y);
const double theta = phi * i;
const double x = cos(theta) * radius;
const double z = sin(theta) * radius;
result[i] = R3(x, y, z) + origin;
}
return result;
}
} // namespace
ff::Polyhedron::Polyhedron(const Topology& topology, const std::vector<R3>& vertices,
const R3& location)
: IBody(location)
, m_topology(std::make_unique<const Topology>(topology))
, m_vertices(vertices)
, m_absolute_vertices(shift_vertices(vertices, location))
, m_faces(precompute_faces(topology, vertices))
, m_radius(precompute_radius(vertices))
, m_volume(precompute_volume(m_faces, m_topology->symmetry_Ci))
{
}
ff::Polyhedron::~Polyhedron() = default;
const ff::Topology& ff::Polyhedron::topology() const
{
return *m_topology;
}
const std::vector<ff::Face>& ff::Polyhedron::faces() const
{
return m_faces;
}
//! Returns the form factor F(q) of this polyhedron, with origin at z=0.
complex_t ff::Polyhedron::formfactor_at_center(const C3& q) const
{
const bool sym_Ci = m_topology->symmetry_Ci;
const double q_red = m_radius * q.mag();
#ifdef ALGORITHM_DIAGNOSTIC
polyhedralDiagnosis.reset();
#endif
if (q_red == 0)
return m_volume;
if (q_red < q_limit_series) {
// summation of power series
#ifdef ALGORITHM_DIAGNOSTIC
polyhedralDiagnosis.algo = 100;
#endif
complex_t sum = 0;
complex_t n_fac = (sym_Ci ? -2 : -1) / q.mag2();
int count_return_condition = 0;
for (int n = 2; n < n_limit_series; ++n) {
if (sym_Ci && n & 1)
continue;
#ifdef ALGORITHM_DIAGNOSTIC
polyhedralDiagnosis.order = std::max(polyhedralDiagnosis.order, n);
#endif
complex_t term = 0;
for (const Face& Gk : m_faces)
term += Gk.ff_n(n + 1, q);
term *= n_fac;
#ifdef ALGORITHM_DIAGNOSTIC_LEVEL2
polyhedralDiagnosis.msg +=
boost::str(boost::format(" + term(n=%2i) = %23.17e+i*%23.17e\n") % n % term.real()
% term.imag());
#endif
sum += term;
if (std::abs(term) <= eps * std::abs(sum) || std::abs(sum) < eps * m_volume)
++count_return_condition;
else
count_return_condition = 0;
if (count_return_condition > 2)
return m_volume + sum; // regular exit
n_fac = sym_Ci ? -n_fac : mul_I(n_fac);
}
throw std::runtime_error("Numeric failure in polyhedron: series F(q) not converged");
}
// direct evaluation of analytic formula (coefficients may involve series)
#ifdef ALGORITHM_DIAGNOSTIC
polyhedralDiagnosis.algo = 200;
#endif
complex_t sum = 0;
for (const Face& Gk : m_faces) {
complex_t qn = Gk.normalProjectionConj(q); // conj(q)*normal
if (std::abs(qn) < eps * q.mag())
continue;
complex_t term = qn * Gk.ff(q, sym_Ci);
#ifdef ALGORITHM_DIAGNOSTIC //_LEVEL2
polyhedralDiagnosis.msg += boost::str(boost::format(" + face_ff = %23.17e+i*%23.17e\n")
% term.real() % term.imag());
#endif
sum += term;
}
#ifdef ALGORITHM_DIAGNOSTIC //_LEVEL2
polyhedralDiagnosis.msg +=
boost::str(boost::format(" -> raw sum = %23.17e+i*%23.17e; divisor = %23.17e\n")
% sum.real() % sum.imag() % q.mag2());
#endif
return sum / I / q.mag2();
}
//! Returns true if a vertex v is located inside the polygon by counting odd vs even ray cast
//! intersections. Uses fibonacci_sphere as sampling method and determines the result by majority
//! vote.
bool ff::Polyhedron::is_inside(const R3& v, int nsamples) const
{
const R3 v_rel = v - location();
if ((v_rel).mag() > m_radius)
return false;
if (nsamples < 2)
throw std::runtime_error(
"Invalid call to libformfactor, function is_inside: nsamples < 2 is "
"out of range.");
int n_inside = 0; // number of rays that cross an odd number of faces
std::vector<R3> samples = fibonacci_sphere(v_rel, nsamples);
for (const R3& sample : samples) {
int crossings = ray_crossings(v_rel, sample, m_faces, false);
if (m_topology->symmetry_Ci)
crossings += ray_crossings(v_rel, sample, m_faces, true);
if (crossings % 2 != 0)
n_inside++;
}
return n_inside > nsamples / 2;
}
R3 ff::Polyhedron::center_of_mass() const
{
if (m_topology->symmetry_Ci)
return {};
R3 result;
for (const ff::Face& face : m_faces)
result += face.center_of_polygon() * face.pyramidalVolume();
return result * (3. / 4) / m_volume;
}
double ff::Polyhedron::z_bottom() const
{
return std::min_element(m_vertices.begin(), m_vertices.end(),
[](const R3& a, const R3& b) { return a.z() < b.z(); })
->z();
}
//! Returns a clipped copy of this Polyhedron,
//! zMin is the lower clipping planes offset,
//! zMax is the upper clipping planes offset,
//! The new Polyhedron consists of the volume between zMin and zMax
ff::Polyhedron* ff::Polyhedron::clipped(double zMin, double zMax) const
{
if (zMin > zMax)
throw std::runtime_error("Invalid call to libformfactor, function clipped: zMin > zMax");
if (zMin == zMax)
throw std::runtime_error("Invalid call to libformfactor, function clipped: zMin == zMax");
std::unique_ptr<Polyhedron> result(ff::atomic::z_clip(*this, zMin,false));
result.reset(ff::atomic::z_clip(*result, zMax,true));
return result.release();
}
|