1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
// ************************************************************************************************
//
// libformfactor: efficient and accurate computation of scattering form factors
//
//! @file ff/Prism.cpp
//! @brief Implements class Prism.
//!
//! @homepage https://jugit.fz-juelich.de/mlz/libformfactor
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2022
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
//! The mathematics implemented here is described in full detail in a paper
//! by Joachim Wuttke, entitled
//! "Form factor (Fourier shape transform) of polygon and polyhedron."
#include "ff/Prism.h"
#include "ff/Edge.h"
#include "ff/Face.h"
#include "ff/Polyhedron.h"
#include "ff/Topology.h"
#include <algorithm>
#include <numeric>
#include <stdexcept>
namespace {
complex_t sinc(const complex_t z) // cardinal sine function, sin(x)/x
{
if (z == complex_t(0., 0.))
return 1.0;
return std::sin(z) / z;
}
ff::Face precompute_base(bool symmetry_Ci, const std::vector<R3>& base_vertices)
{
try {
return ff::Face(base_vertices, symmetry_Ci);
} catch (std::invalid_argument& e) {
throw std::invalid_argument(std::string("Invalid parameterization of Prism: ") + e.what());
} catch (std::logic_error& e) {
throw std::logic_error(std::string("Bug in Prism: ") + e.what()
+ " [please report to the maintainers]");
} catch (std::exception& e) {
throw std::runtime_error(std::string("Unexpected exception in Prism: ") + e.what()
+ " [please report to the maintainers]");
}
}
} // namespace
ff::Prism::Prism(bool symmetry_Ci, double height, const std::vector<R3>& base_vertices,
const R3& location)
: IBody(location)
, m_height(height)
, m_base_vertices(base_vertices)
, m_base(std::make_unique<const ff::Face>(precompute_base(symmetry_Ci, base_vertices)))
, m_radius(std::hypot(height / 2, m_base->radius()))
, m_volume(height * m_base->area())
{
}
ff::Prism::~Prism() = default;
const std::vector<R3>& ff::Prism::vertices() const
{
if (my_vertices.empty()) {
const int N = m_base_vertices.size();
my_vertices.resize(2 * N);
for (int i = 0; i < N; i++) {
my_vertices[i] = m_base_vertices[i] + m_height / 2 * m_base->normal() + location();
my_vertices[i + N] = m_base_vertices[i] - m_height / 2 * m_base->normal() + location();
}
}
return my_vertices;
}
const ff::Topology& ff::Prism::topology() const
{
if (!my_topology) {
const int N = m_base_vertices.size();
std::vector<int> vertex_indices_floor(N);
std::vector<int> vertex_indices_ceil(N);
for (int i = 0; i < N; i++) {
vertex_indices_floor[i] = i;
vertex_indices_ceil[i] = (2 * N - 1) - i;
}
std::vector<FacialTopology> faces(N + 2);
faces[0] = {vertex_indices_floor, m_base->is_symmetric()};
faces[N + 1] = {vertex_indices_ceil, m_base->is_symmetric()};
for (int i = 1; i < N + 1; i++) {
int j = i % N;
faces[i] = {{i + N - 1, j + N, j, i - 1}, true};
}
if (m_base->is_symmetric())
std::reverse(faces.begin() + (N / 2) + 1, faces.end() - 1);
my_topology.reset(new Topology{faces, m_base->is_symmetric()});
}
return *my_topology;
}
double ff::Prism::z_bottom() const
{
return -m_height / 2;
}
complex_t ff::Prism::formfactor_at_center(const C3& q) const
{
try {
#ifdef ALGORITHM_DIAGNOSTIC
polyhedralDiagnosis.reset();
polyhedralDiagnosis.algo = 500;
#endif
C3 qxy(q.x(), q.y(), 0.);
return m_height * sinc(m_height / 2 * q.z()) * m_base->ff_2D(qxy);
} catch (std::logic_error& e) {
throw std::logic_error(std::string("Bug in Prism: ") + e.what()
+ " [please report to the maintainers]");
} catch (std::runtime_error& e) {
throw std::runtime_error(std::string("Numeric computation failed in Prism: ") + e.what()
+ " [please report to the maintainers]");
} catch (std::exception& e) {
throw std::runtime_error(std::string("Unexpected exception in Prism: ") + e.what()
+ " [please report to the maintainers]");
}
}
ff::Polyhedron* ff::Prism::asPolyhedron() const
{
std::vector<R3> vv = vertices();
for (R3& v : vv)
v -= location();
return new Polyhedron(topology(), vv, location());
}
|