[go: up one dir, main page]

File: key_def.c

package info (click to toggle)
tarantool 2.6.0-1.4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 85,412 kB
  • sloc: ansic: 513,775; cpp: 69,493; sh: 25,650; python: 19,190; perl: 14,973; makefile: 4,178; yacc: 1,329; sql: 1,074; pascal: 620; ruby: 190; awk: 18; lisp: 7
file content (894 lines) | stat: -rw-r--r-- 26,762 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
/*
 * Copyright 2010-2016, Tarantool AUTHORS, please see AUTHORS file.
 *
 * Redistribution and use in source and binary forms, with or
 * without modification, are permitted provided that the following
 * conditions are met:
 *
 * 1. Redistributions of source code must retain the above
 *    copyright notice, this list of conditions and the
 *    following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above
 *    copyright notice, this list of conditions and the following
 *    disclaimer in the documentation and/or other materials
 *    provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY <COPYRIGHT HOLDER> ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 * <COPYRIGHT HOLDER> OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
 * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */
#include "json/json.h"
#include "key_def.h"
#include "tuple_format.h"
#include "tuple_compare.h"
#include "tuple_extract_key.h"
#include "tuple_hash.h"
#include "column_mask.h"
#include "schema_def.h"
#include "coll_id_cache.h"
#include "small/region.h"
#include "coll/coll.h"

const char *sort_order_strs[] = { "asc", "desc", "undef" };

const struct key_part_def key_part_def_default = {
	0,
	field_type_MAX,
	COLL_NONE,
	false,
	ON_CONFLICT_ACTION_DEFAULT,
	SORT_ORDER_ASC,
	NULL
};

static int64_t
part_type_by_name_wrapper(const char *str, uint32_t len)
{
	return field_type_by_name(str, len);
}

#define PART_OPT_TYPE		 "type"
#define PART_OPT_FIELD		 "field"
#define PART_OPT_COLLATION	 "collation"
#define PART_OPT_NULLABILITY	 "is_nullable"
#define PART_OPT_NULLABLE_ACTION "nullable_action"
#define PART_OPT_SORT_ORDER	 "sort_order"
#define PART_OPT_PATH		 "path"

const struct opt_def part_def_reg[] = {
	OPT_DEF_ENUM(PART_OPT_TYPE, field_type, struct key_part_def, type,
		     part_type_by_name_wrapper),
	OPT_DEF(PART_OPT_FIELD, OPT_UINT32, struct key_part_def, fieldno),
	OPT_DEF(PART_OPT_COLLATION, OPT_UINT32, struct key_part_def, coll_id),
	OPT_DEF(PART_OPT_NULLABILITY, OPT_BOOL, struct key_part_def,
		is_nullable),
	OPT_DEF_ENUM(PART_OPT_NULLABLE_ACTION, on_conflict_action,
		     struct key_part_def, nullable_action, NULL),
	OPT_DEF_ENUM(PART_OPT_SORT_ORDER, sort_order, struct key_part_def,
		     sort_order, NULL),
	OPT_DEF(PART_OPT_PATH, OPT_STRPTR, struct key_part_def, path),
	OPT_END,
};

/**
 * Return the size of memory occupied by the given key definition.
 */
static inline size_t
key_def_copy_size(const struct key_def *def)
{
	size_t sz = 0;
	for (uint32_t i = 0; i < def->part_count; i++)
		sz += def->parts[i].path_len;
	return key_def_sizeof(def->part_count, sz);
}

/**
 * A helper function for key_def_copy() and key_def_dup() that
 * copies key definition src of size sz to res without checking
 * that the two key definitions have the same allocation size.
 */
static struct key_def *
key_def_copy_impl(struct key_def *res, const struct key_def *src, size_t sz)
{
	memcpy(res, src, sz);
	/*
	 * Update the paths pointers so that they refer to the
	 * JSON strings bytes in the new allocation.
	 */
	for (uint32_t i = 0; i < src->part_count; i++) {
		if (src->parts[i].path == NULL)
			continue;
		size_t path_offset = src->parts[i].path - (char *)src;
		res->parts[i].path = (char *)res + path_offset;
	}
	if (src->multikey_path != NULL) {
		size_t path_offset = src->multikey_path - (char *)src;
		res->multikey_path = (char *)res + path_offset;
	}
	return res;
}

void
key_def_copy(struct key_def *dest, const struct key_def *src)
{
	size_t sz = key_def_copy_size(src);
	assert(sz == key_def_copy_size(dest));
	key_def_copy_impl(dest, src, sz);
}

struct key_def *
key_def_dup(const struct key_def *src)
{
	size_t sz = key_def_copy_size(src);
	struct key_def *res = malloc(sz);
	if (res == NULL) {
		diag_set(OutOfMemory, sz, "malloc", "res");
		return NULL;
	}
	key_def_copy_impl(res, src, sz);
	return res;
}

void
key_def_delete(struct key_def *def)
{
	free(def);
}

static void
key_def_set_func(struct key_def *def)
{
	key_def_set_compare_func(def);
	key_def_set_hash_func(def);
	key_def_set_extract_func(def);
}

static int
key_def_set_part_path(struct key_def *def, uint32_t part_no, const char *path,
		      uint32_t path_len, char **path_pool)
{
	struct key_part *part = &def->parts[part_no];
	if (path == NULL) {
		part->path = NULL;
		part->path_len = 0;
		return 0;
	}
	assert(path_pool != NULL);
	part->path = *path_pool;
	*path_pool += path_len;
	memcpy(part->path, path, path_len);
	part->path_len = path_len;

	/*
	 * Test whether this key_part has array index
	 * placeholder [*] (i.e. is a part of multikey index
	 * definition).
	 */
	int multikey_path_len =
		json_path_multikey_offset(path, path_len, TUPLE_INDEX_BASE);
	if ((uint32_t) multikey_path_len == path_len)
		return 0;

	/*
	 * In case of multikey index key_parts must have the
	 * same JSON prefix.
	 */
	if (def->multikey_path == NULL) {
		/*
		 * Keep the index of the first multikey key_part
		 * and the length of JSON path substring to the
		 * array index placeholder sign [*].
		 */
		def->multikey_path = part->path;
		def->multikey_fieldno = part->fieldno;
		def->multikey_path_len = (uint32_t) multikey_path_len;
		def->is_multikey = true;
	} else if (def->multikey_fieldno != part->fieldno ||
		   json_path_cmp(path, multikey_path_len, def->multikey_path,
				 def->multikey_path_len,
				 TUPLE_INDEX_BASE) != 0) {
		diag_set(ClientError, ER_WRONG_INDEX_OPTIONS,
			 part_no + TUPLE_INDEX_BASE,
			 "incompatable multikey index path");
		return -1;
	}

	/* Skip JSON_TOKEN_ANY token. */
	struct json_lexer lexer;
	struct json_token token;
	json_lexer_create(&lexer, path + multikey_path_len,
			  path_len - multikey_path_len, TUPLE_INDEX_BASE);
	json_lexer_next_token(&lexer, &token);
	assert(token.type == JSON_TOKEN_ANY);

	/* The rest of JSON path couldn't be multikey. */
	int multikey_path_suffix_len =
		path_len - multikey_path_len - lexer.offset;
	if (json_path_multikey_offset(path + multikey_path_len + lexer.offset,
				      multikey_path_suffix_len,
				      TUPLE_INDEX_BASE) !=
	    multikey_path_suffix_len) {
		diag_set(ClientError, ER_WRONG_INDEX_OPTIONS,
			 part_no + TUPLE_INDEX_BASE,
			 "no more than one array index placeholder [*] is "
			 "allowed in JSON path");
		return -1;
	}
	return 0;
}

static int
key_def_set_part(struct key_def *def, uint32_t part_no, uint32_t fieldno,
		 enum field_type type, enum on_conflict_action nullable_action,
		 struct coll *coll, uint32_t coll_id,
		 enum sort_order sort_order, const char *path,
		 uint32_t path_len, char **path_pool, int32_t offset_slot,
		 uint64_t format_epoch)
{
	assert(part_no < def->part_count);
	assert(type < field_type_MAX);
	def->is_nullable |= (nullable_action == ON_CONFLICT_ACTION_NONE);
	def->has_json_paths |= path != NULL;
	def->parts[part_no].nullable_action = nullable_action;
	def->parts[part_no].fieldno = fieldno;
	def->parts[part_no].type = type;
	def->parts[part_no].coll = coll;
	def->parts[part_no].coll_id = coll_id;
	def->parts[part_no].sort_order = sort_order;
	def->parts[part_no].offset_slot_cache = offset_slot;
	def->parts[part_no].format_epoch = format_epoch;
	column_mask_set_fieldno(&def->column_mask, fieldno);
	return key_def_set_part_path(def, part_no, path, path_len, path_pool);
}

struct key_def *
key_def_new(const struct key_part_def *parts, uint32_t part_count,
	    bool for_func_index)
{
	size_t sz = 0;
	for (uint32_t i = 0; i < part_count; i++)
		sz += parts[i].path != NULL ? strlen(parts[i].path) : 0;
	sz = key_def_sizeof(part_count, sz);
	struct key_def *def = calloc(1, sz);
	if (def == NULL) {
		diag_set(OutOfMemory, sz, "malloc", "struct key_def");
		return NULL;
	}

	def->part_count = part_count;
	def->unique_part_count = part_count;
	def->for_func_index = for_func_index;
	/* A pointer to the JSON paths data in the new key_def. */
	char *path_pool = (char *)def + key_def_sizeof(part_count, 0);
	for (uint32_t i = 0; i < part_count; i++) {
		const struct key_part_def *part = &parts[i];
		struct coll *coll = NULL;
		if (part->coll_id != COLL_NONE) {
			struct coll_id *coll_id = coll_by_id(part->coll_id);
			if (coll_id == NULL) {
				diag_set(ClientError, ER_WRONG_INDEX_OPTIONS,
					 i + 1, "collation was not found by ID");
				goto error;
			}
			coll = coll_id->coll;
		}
		uint32_t path_len = part->path != NULL ? strlen(part->path) : 0;
		if (key_def_set_part(def, i, part->fieldno, part->type,
				     part->nullable_action, coll, part->coll_id,
				     part->sort_order, part->path, path_len,
				     &path_pool, TUPLE_OFFSET_SLOT_NIL,
				     0) != 0)
			goto error;
	}
	if (for_func_index) {
		if (def->has_json_paths) {
			diag_set(ClientError, ER_UNSUPPORTED,
				 "Functional index", "json paths");
			goto error;
		}
		if(!key_def_is_sequential(def) || parts->fieldno != 0) {
			diag_set(ClientError, ER_FUNC_INDEX_PARTS,
				 "key part numbers must be sequential and "
				 "first part number must be 1");
			goto error;
		}
	}
	assert(path_pool == (char *)def + sz);
	key_def_set_func(def);
	return def;
error:
	key_def_delete(def);
	return NULL;
}

int
key_def_dump_parts(const struct key_def *def, struct key_part_def *parts,
		   struct region *region)
{
	for (uint32_t i = 0; i < def->part_count; i++) {
		const struct key_part *part = &def->parts[i];
		struct key_part_def *part_def = &parts[i];
		part_def->fieldno = part->fieldno;
		part_def->type = part->type;
		part_def->is_nullable = key_part_is_nullable(part);
		part_def->nullable_action = part->nullable_action;
		part_def->coll_id = part->coll_id;
		if (part->path != NULL) {
			char *path = region_alloc(region, part->path_len + 1);
			if (path == NULL) {
				diag_set(OutOfMemory, part->path_len + 1,
					 "region", "part_def->path");
				return -1;
			}
			memcpy(path, part->path, part->path_len);
			path[part->path_len] = '\0';
			part_def->path = path;
		} else {
			part_def->path = NULL;
		}
	}
	return 0;
}

box_key_def_t *
box_key_def_new(uint32_t *fields, uint32_t *types, uint32_t part_count)
{
	size_t sz = key_def_sizeof(part_count, 0);
	struct key_def *key_def = calloc(1, sz);
	if (key_def == NULL) {
		diag_set(OutOfMemory, sz, "malloc", "struct key_def");
		return NULL;
	}

	key_def->part_count = part_count;
	key_def->unique_part_count = part_count;

	for (uint32_t item = 0; item < part_count; ++item) {
		if (key_def_set_part(key_def, item, fields[item],
				     (enum field_type)types[item],
				     ON_CONFLICT_ACTION_DEFAULT, NULL,
				     COLL_NONE, SORT_ORDER_ASC, NULL, 0, NULL,
				     TUPLE_OFFSET_SLOT_NIL, 0) != 0) {
			key_def_delete(key_def);
			return NULL;
		}
	}
	key_def_set_func(key_def);
	return key_def;
}

void
box_key_def_delete(box_key_def_t *key_def)
{
	key_def_delete(key_def);
}

int
box_tuple_compare(box_tuple_t *tuple_a, box_tuple_t *tuple_b,
		  box_key_def_t *key_def)
{
	return tuple_compare(tuple_a, HINT_NONE, tuple_b, HINT_NONE, key_def);
}

int
box_tuple_compare_with_key(box_tuple_t *tuple_a, const char *key_b,
			   box_key_def_t *key_def)
{
	uint32_t part_count = mp_decode_array(&key_b);
	return tuple_compare_with_key(tuple_a, HINT_NONE, key_b,
				      part_count, HINT_NONE, key_def);

}

int
key_part_cmp(const struct key_part *parts1, uint32_t part_count1,
	     const struct key_part *parts2, uint32_t part_count2)
{
	const struct key_part *part1 = parts1;
	const struct key_part *part2 = parts2;
	uint32_t part_count = MIN(part_count1, part_count2);
	const struct key_part *end = parts1 + part_count;
	for (; part1 != end; part1++, part2++) {
		if (part1->fieldno != part2->fieldno)
			return part1->fieldno < part2->fieldno ? -1 : 1;
		if ((int) part1->type != (int) part2->type)
			return (int) part1->type < (int) part2->type ? -1 : 1;
		if (part1->coll != part2->coll)
			return (uintptr_t) part1->coll <
			       (uintptr_t) part2->coll ? -1 : 1;
		if (part1->sort_order != part2->sort_order)
			return part1->sort_order < part2->sort_order ? -1 : 1;
		if (key_part_is_nullable(part1) != key_part_is_nullable(part2))
			return key_part_is_nullable(part1) <
			       key_part_is_nullable(part2) ? -1 : 1;
		int rc = json_path_cmp(part1->path, part1->path_len,
				       part2->path, part2->path_len,
				       TUPLE_INDEX_BASE);
		if (rc != 0)
			return rc;
	}
	return part_count1 < part_count2 ? -1 : part_count1 > part_count2;
}

void
key_def_update_optionality(struct key_def *def, uint32_t min_field_count)
{
	def->has_optional_parts = false;
	for (uint32_t i = 0; i < def->part_count; ++i) {
		struct key_part *part = &def->parts[i];
		def->has_optional_parts |=
			(min_field_count < part->fieldno + 1 ||
			 part->path != NULL) && key_part_is_nullable(part);
		/*
		 * One optional part is enough to switch to new
		 * comparators.
		 */
		if (def->has_optional_parts)
			break;
	}
	key_def_set_func(def);
}

int
key_def_snprint_parts(char *buf, int size, const struct key_part_def *parts,
		      uint32_t part_count)
{
	int total = 0;
	SNPRINT(total, snprintf, buf, size, "[");
	for (uint32_t i = 0; i < part_count; i++) {
		const struct key_part_def *part = &parts[i];
		assert(part->type < field_type_MAX);
		SNPRINT(total, snprintf, buf, size, "[%d, '%s'",
			(int)part->fieldno, field_type_strs[part->type]);
		if (part->path != NULL) {
			SNPRINT(total, snprintf, buf, size, ", path='%s'",
				part->path);
		}
		SNPRINT(total, snprintf, buf, size, "]");
		if (i < part_count - 1)
			SNPRINT(total, snprintf, buf, size, ", ");
	}
	SNPRINT(total, snprintf, buf, size, "]");
	return total;
}

size_t
key_def_sizeof_parts(const struct key_part_def *parts, uint32_t part_count)
{
	size_t size = 0;
	for (uint32_t i = 0; i < part_count; i++) {
		const struct key_part_def *part = &parts[i];
		int count = 2;
		if (part->coll_id != COLL_NONE)
			count++;
		if (part->is_nullable)
			count++;
		if (part->path != NULL)
			count++;
		size += mp_sizeof_map(count);
		size += mp_sizeof_str(strlen(PART_OPT_FIELD));
		size += mp_sizeof_uint(part->fieldno);
		assert(part->type < field_type_MAX);
		size += mp_sizeof_str(strlen(PART_OPT_TYPE));
		size += mp_sizeof_str(strlen(field_type_strs[part->type]));
		if (part->coll_id != COLL_NONE) {
			size += mp_sizeof_str(strlen(PART_OPT_COLLATION));
			size += mp_sizeof_uint(part->coll_id);
		}
		if (part->is_nullable) {
			size += mp_sizeof_str(strlen(PART_OPT_NULLABILITY));
			size += mp_sizeof_bool(part->is_nullable);
		}
		if (part->path != NULL) {
			size += mp_sizeof_str(strlen(PART_OPT_PATH));
			size += mp_sizeof_str(strlen(part->path));
		}
	}
	return size;
}

char *
key_def_encode_parts(char *data, const struct key_part_def *parts,
		     uint32_t part_count)
{
	for (uint32_t i = 0; i < part_count; i++) {
		const struct key_part_def *part = &parts[i];
		int count = 2;
		if (part->coll_id != COLL_NONE)
			count++;
		if (part->is_nullable)
			count++;
		if (part->path != NULL)
			count++;
		data = mp_encode_map(data, count);
		data = mp_encode_str(data, PART_OPT_FIELD,
				     strlen(PART_OPT_FIELD));
		data = mp_encode_uint(data, part->fieldno);
		data = mp_encode_str(data, PART_OPT_TYPE,
				     strlen(PART_OPT_TYPE));
		assert(part->type < field_type_MAX);
		const char *type_str = field_type_strs[part->type];
		data = mp_encode_str(data, type_str, strlen(type_str));
		if (part->coll_id != COLL_NONE) {
			data = mp_encode_str(data, PART_OPT_COLLATION,
					     strlen(PART_OPT_COLLATION));
			data = mp_encode_uint(data, part->coll_id);
		}
		if (part->is_nullable) {
			data = mp_encode_str(data, PART_OPT_NULLABILITY,
					     strlen(PART_OPT_NULLABILITY));
			data = mp_encode_bool(data, part->is_nullable);
		}
		if (part->path != NULL) {
			data = mp_encode_str(data, PART_OPT_PATH,
					     strlen(PART_OPT_PATH));
			data = mp_encode_str(data, part->path,
					     strlen(part->path));
		}
	}
	return data;
}

/**
 * 1.6.6-1.7.5
 * Decode parts array from tuple field and write'em to index_def structure.
 * Throws a nice error about invalid types, but does not check ranges of
 *  resulting values field_no and field_type
 * Parts expected to be a sequence of <part_count> arrays like this:
 *  [NUM, STR, ..][NUM, STR, ..]..,
 */
static int
key_def_decode_parts_166(struct key_part_def *parts, uint32_t part_count,
			 const char **data, const struct field_def *fields,
			 uint32_t field_count)
{
	for (uint32_t i = 0; i < part_count; i++) {
		struct key_part_def *part = &parts[i];
		if (mp_typeof(**data) != MP_ARRAY) {
			diag_set(ClientError, ER_WRONG_INDEX_PARTS,
				 "expected an array");
			return -1;
		}
		uint32_t item_count = mp_decode_array(data);
		if (item_count < 1) {
			diag_set(ClientError, ER_WRONG_INDEX_PARTS,
				 "expected a non-empty array");
			return -1;
		}
		if (item_count < 2) {
			diag_set(ClientError, ER_WRONG_INDEX_PARTS,
				 "a field type is missing");
			return -1;
		}
		if (mp_typeof(**data) != MP_UINT) {
			diag_set(ClientError, ER_WRONG_INDEX_PARTS,
				 "field id must be an integer");
			return -1;
		}
		*part = key_part_def_default;
		part->fieldno = (uint32_t) mp_decode_uint(data);
		if (mp_typeof(**data) != MP_STR) {
			diag_set(ClientError, ER_WRONG_INDEX_PARTS,
				 "field type must be a string");
			return -1;
		}
		uint32_t len;
		const char *str = mp_decode_str(data, &len);
		for (uint32_t j = 2; j < item_count; j++)
			mp_next(data);
		part->type = field_type_by_name(str, len);
		if (part->type == field_type_MAX) {
			diag_set(ClientError, ER_WRONG_INDEX_PARTS,
				 "unknown field type");
			return -1;
		}
		part->is_nullable = (part->fieldno < field_count ?
				     fields[part->fieldno].is_nullable :
				     key_part_def_default.is_nullable);
		part->coll_id = COLL_NONE;
		part->path = NULL;
	}
	return 0;
}

int
key_def_decode_parts(struct key_part_def *parts, uint32_t part_count,
		     const char **data, const struct field_def *fields,
		     uint32_t field_count, struct region *region)
{
	if (mp_typeof(**data) == MP_ARRAY) {
		return key_def_decode_parts_166(parts, part_count, data,
						fields, field_count);
	}
	for (uint32_t i = 0; i < part_count; i++) {
		struct key_part_def *part = &parts[i];
		if (mp_typeof(**data) != MP_MAP) {
			diag_set(ClientError, ER_WRONG_INDEX_OPTIONS,
				 i + TUPLE_INDEX_BASE,
				 "index part is expected to be a map");
			return -1;
		}
		int opts_count = mp_decode_map(data);
		*part = key_part_def_default;
		bool is_action_missing = true;
		uint32_t  action_literal_len = strlen("nullable_action");
		for (int j = 0; j < opts_count; ++j) {
			if (mp_typeof(**data) != MP_STR) {
				diag_set(ClientError, ER_WRONG_INDEX_OPTIONS,
					 i + TUPLE_INDEX_BASE,
					 "key must be a string");
				return -1;
			}
			uint32_t key_len;
			const char *key = mp_decode_str(data, &key_len);
			if (opts_parse_key(part, part_def_reg, key, key_len, data,
					   ER_WRONG_INDEX_OPTIONS,
					   i + TUPLE_INDEX_BASE, region,
					   false) != 0)
				return -1;
			if (is_action_missing &&
			    key_len == action_literal_len &&
			    memcmp(key, "nullable_action",
				   action_literal_len) == 0)
				is_action_missing = false;
		}
		if (is_action_missing) {
			part->nullable_action = part->is_nullable ?
				ON_CONFLICT_ACTION_NONE
				: ON_CONFLICT_ACTION_DEFAULT;
		}
		if (part->type == field_type_MAX) {
			diag_set(ClientError, ER_WRONG_INDEX_OPTIONS,
				 i + TUPLE_INDEX_BASE,
				 "index part: unknown field type");
			return -1;
		}
		if (part->coll_id != COLL_NONE &&
		    part->type != FIELD_TYPE_STRING &&
		    part->type != FIELD_TYPE_SCALAR) {
			diag_set(ClientError, ER_WRONG_INDEX_OPTIONS,
				 i + 1,
				 "collation is reasonable only for "
				 "string and scalar parts");
			return -1;
		}
		if (!((part->is_nullable && part->nullable_action ==
		       ON_CONFLICT_ACTION_NONE)
		      || (!part->is_nullable
			  && part->nullable_action !=
			  ON_CONFLICT_ACTION_NONE))) {
			diag_set(ClientError, ER_WRONG_INDEX_OPTIONS,
				 i + TUPLE_INDEX_BASE,
				 "index part: conflicting nullability and "
				 "nullable action properties");
			return -1;
		}
		if (part->sort_order == sort_order_MAX) {
			diag_set(ClientError, ER_WRONG_INDEX_OPTIONS,
				 i + TUPLE_INDEX_BASE,
				 "index part: unknown sort order");
			return -1;
		}
		if (part->path != NULL &&
		    json_path_validate(part->path, strlen(part->path),
				       TUPLE_INDEX_BASE) != 0) {
			diag_set(ClientError, ER_WRONG_INDEX_OPTIONS,
				 i + TUPLE_INDEX_BASE, "invalid path");
			return -1;
		}
	}
	return 0;
}

const struct key_part *
key_def_find_by_fieldno(const struct key_def *key_def, uint32_t fieldno)
{
	struct key_part part;
	memset(&part, 0, sizeof(struct key_part));
	part.fieldno = fieldno;
	return key_def_find(key_def, &part);
}

const struct key_part *
key_def_find(const struct key_def *key_def, const struct key_part *to_find)
{
	const struct key_part *part = key_def->parts;
	const struct key_part *end = part + key_def->part_count;
	for (; part != end; part++) {
		if (part->fieldno == to_find->fieldno &&
		    json_path_cmp(part->path, part->path_len,
				  to_find->path, to_find->path_len,
				  TUPLE_INDEX_BASE) == 0)
			return part;
	}
	return NULL;
}

bool
key_def_contains(const struct key_def *first, const struct key_def *second)
{
	/*
	 * Func index definitions cannot be contained in
	 * each other.
	 */
	if (first->for_func_index || second->for_func_index)
		return false;
	const struct key_part *part = second->parts;
	const struct key_part *end = part + second->part_count;
	for (; part != end; part++) {
		if (key_def_find(first, part) == NULL)
			return false;
	}
	return true;
}

/**
 * Return true if to_merge can be merged into key_def.
 */
static bool
key_def_can_merge(const struct key_def *key_def,
		  const struct key_part *to_merge)
{
	if (key_def->for_func_index) {
		/*
		 * Nothing can be omitted in functional index
		 * key definition, everything should be merged.
		 */
		return true;
	}

	const struct key_part *part = key_def_find(key_def, to_merge);
	if (part == NULL)
		return true;
	/*
	 * If both key_def and to_merge have the same field, then
	 * we can merge to_merge into key_def only if its collation
	 * may impose a strict order on otherwise equal keys.
	 */
	return coll_can_merge(part->coll, to_merge->coll);
}

struct key_def *
key_def_merge(const struct key_def *first, const struct key_def *second)
{
	assert(!second->for_func_index);
	uint32_t new_part_count = first->part_count + second->part_count;
	/*
	 * Find and remove part duplicates, i.e. parts counted
	 * twice since they are present in both key defs.
	 */
	size_t sz = 0;
	const struct key_part *part = first->parts;
	const struct key_part *end = part + first->part_count;
	for (; part != end; part++)
		sz += part->path_len;
	part = second->parts;
	end = part + second->part_count;
	for (; part != end; part++) {
		if (!key_def_can_merge(first, part))
			--new_part_count;
		else
			sz += part->path_len;
	}

	sz = key_def_sizeof(new_part_count, sz);
	struct key_def *new_def;
	new_def = (struct key_def *)calloc(1, sz);
	if (new_def == NULL) {
		diag_set(OutOfMemory, sz, "malloc", "new_def");
		return NULL;
	}
	new_def->part_count = new_part_count;
	new_def->unique_part_count = new_part_count;
	new_def->is_nullable = first->is_nullable || second->is_nullable;
	new_def->has_optional_parts = first->has_optional_parts ||
				      second->has_optional_parts;
	new_def->is_multikey = first->is_multikey || second->is_multikey;
	new_def->for_func_index = first->for_func_index;
	new_def->func_index_func = first->func_index_func;

	/* JSON paths data in the new key_def. */
	char *path_pool = (char *)new_def + key_def_sizeof(new_part_count, 0);
	/* Write position in the new key def. */
	uint32_t pos = 0;
	/* Append first key def's parts to the new index_def. */
	part = first->parts;
	end = part + first->part_count;
	for (; part != end; part++) {
		if (key_def_set_part(new_def, pos++, part->fieldno, part->type,
				     part->nullable_action, part->coll,
				     part->coll_id, part->sort_order,
				     part->path, part->path_len, &path_pool,
				     part->offset_slot_cache,
				     part->format_epoch) != 0) {
			key_def_delete(new_def);
			return NULL;
		}
	}

	/* Set-append second key def's part to the new key def. */
	part = second->parts;
	end = part + second->part_count;
	for (; part != end; part++) {
		if (!key_def_can_merge(first, part))
			continue;
		if (key_def_set_part(new_def, pos++, part->fieldno, part->type,
				     part->nullable_action, part->coll,
				     part->coll_id, part->sort_order,
				     part->path, part->path_len, &path_pool,
				     part->offset_slot_cache,
				     part->format_epoch) != 0) {
			key_def_delete(new_def);
			return NULL;
		}
	}
	assert(path_pool == (char *)new_def + sz);
	key_def_set_func(new_def);
	return new_def;
}

struct key_def *
key_def_find_pk_in_cmp_def(const struct key_def *cmp_def,
			   const struct key_def *pk_def,
			   struct region *region)
{
	struct key_def *extracted_def = NULL;
	size_t region_svp = region_used(region);

	/* First, dump primary key parts as is. */
	size_t size;
	struct key_part_def *parts =
		region_alloc_array(region, typeof(parts[0]), pk_def->part_count,
				   &size);
	if (parts == NULL) {
		diag_set(OutOfMemory, size, "region_alloc_array", "parts");
		goto out;
	}
	if (key_def_dump_parts(pk_def, parts, region) != 0)
		goto out;
	/*
	 * Second, update field numbers to match the primary key
	 * parts in a secondary key.
	 */
	for (uint32_t i = 0; i < pk_def->part_count; i++) {
		const struct key_part *part = key_def_find(cmp_def,
							   &pk_def->parts[i]);
		assert(part != NULL);
		parts[i].fieldno = part - cmp_def->parts;
		parts[i].path = NULL;
	}

	/* Finally, allocate the new key definition. */
	extracted_def = key_def_new(parts, pk_def->part_count, false);
out:
	region_truncate(region, region_svp);
	return extracted_def;
}

int
key_validate_parts(const struct key_def *key_def, const char *key,
		   uint32_t part_count, bool allow_nullable,
		   const char **key_end)
{
	for (uint32_t i = 0; i < part_count; i++) {
		const struct key_part *part = &key_def->parts[i];
		if (key_part_validate(part->type, key, i,
				      key_part_is_nullable(part) &&
				      allow_nullable))
			return -1;
		mp_next(&key);
	}
	*key_end = key;
	return 0;
}