1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
.TH timbl 1 "2017 November 9"
.SH NAME
timbl \- Tilburg Memory Based Learner
.SH SYNOPSIS
timbl [options]
timbl \-f data\-file \-t test\(hyfile
.SH DESCRIPTION
TiMBL is an open source software package implementing several memory\(hybased learning algorithms, among which IB1\(hyIG, an implementation of k\(hynearest neighbor classification with feature weighting suitable for symbolic feature spaces, and IGTree, a decision\(hytree approximation of IB1\(hyIG. All implemented algorithms have in common that they store some representation of the training set explicitly in memory. During testing, new cases are classified by extrapolation from the most similar stored cases.
.SH OPTIONS
.B \-a
<n>
or
.B \-a
<string>
.RS
determines the classification algorithm.
Possible values are:
.B 0
or
.B IB
the IB1 (k\(hyNN) algorithm (default)
.B 1
or
.B IGTREE
a decision\(hytree\(hybased approximation of IB1
.B 2
or
.B TRIBL
a hybrid of IB1 and IGTREE
.B 3
or
.B IB2
an incremental editing version of IB1
.B 4
or
.B TRIBL2
a non\(hyparameteric version of TRIBL
.RE
.B \-b
n
.RS
number of lines used for bootstrapping (IB2 only)
.RE
.B \-B
n
.RS
number of bins used for discretization of numeric feature values (Default B=20)
.RE
.BR \-\-Beam =<n>
.RS
limit +v db output to n highest\(hyvote classes
.RE
.BR \-\-clones =<n>
.RS
number f threads to use for parallel testing
.RE
.B \-c
n
.RS
clipping frequency for prestoring MVDM matrices
.RE
.B +D
.RS
store distributions on all nodes (necessary for
using +v db with IGTree, but wastes memory otherwise)
.RE
.B \-\-Diversify
.RS
rescale weight (see docs)
.RE
.B \-d
val
.RS
weigh neighbors as function of their distance:
Z : equal weights to all (default)
ID : Inverse Distance
IL : Inverse Linear
ED:a : Exponential Decay with factor a (no whitespace!)
ED:a:b : Exponential Decay with factor a and b (no whitespace!)
.RE
.B \-e
n
.RS
estimate time until n patterns tested
.RE
.B \-f
file
.RS
read from data file 'file' OR use filenames from 'file' for cross validation test
.RE
.B \-F
format
.RS
assume the specified input format
(Compact, C4.5, ARFF, Columns, Binary, Sparse )
.RE
.B \-G
normalization
.RS
normalize distributions (+v db option only)
Supported normalizations are:
.B Probability
or
.B 0
normalize between 0 and 1
.BR addFactor :<f>
or
.BR 1 :<f>
add f to all possible targets, then normalize between 0 and 1 (default f=1.0).
.B logProbability
or
.B 2
Add 1 to the target Weight, take the 10Log and then normalize between 0 and 1
.RE
.B +H
or
.B \-H
.RS
write hashed trees (default +H)
.RE
.B \-i
file
.RS
read the InstanceBase from 'file' (skips phase 1 & 2 )
.RE
.B \-I
file
.RS
dump the InstanceBase in 'file'
.RE
.B \-k
n
.RS
search 'n' nearest neighbors (default n = 1)
.RE
.B \-L
n
.RS
set value frequency threshold to back off from MVDM to Overlap at level n
.RE
.B \-l
n
.RS
fixed feature value length (Compact format only)
.RE
.B \-m
string
.RS
use feature metrics as specified in 'string':
The format is : GlobalMetric:MetricRange:MetricRange
e.g.: mO:N3:I2,5\-7
C: cosine distance. (Global only. numeric features implied)
D: dot product. (Global only. numeric features implied)
DC: Dice coefficient
O: weighted overlap (default)
E: Euclidian distance
L: Levenshtein distance
M: modified value difference
J: Jeffrey divergence
S: Jensen\(hyShannon divergence
N: numeric values
I: Ignore named values
.RE
.BR \-\-matrixin =file
.RS
read ValueDifference Matrices from file 'file'
.RE
.BR \-\-matrixout =file
.RS
store ValueDifference Matrices in 'file'
.RE
.B \-n
file
.RS
create a C4.5\-style names file 'file'
.RE
.B \-M
n
.RS
size of MaxBests Array
.RE
.B \-N
n
.RS
number of features (default 2500)
.RE
.B \-o
s
.RS
use s as output filename
.RE
.BR \-\-occurrences =<value>
.RS
The input file contains occurrence counts (at the last position)
value can be one of:
.B train
,
.B test
or
.B both
.RE
.B \-O
path
.RS
save output using 'path'
.RE
.B \-p
n
.RS
show progress every n lines (default p = 100,000)
.RE
.B \-P
path
.RS
read data using 'path'
.RE
.B \-q
n
.RS
set TRIBL threshold at level n
.RE
.B \-R
n
.RS
solve ties at random with seed n
.RE
.B \-s
.RS
use the exemplar weights from the input file
.RE
.B \-s0
.RS
ignore the exemplar weights from the input file
.RE
.B \-T
n
.RS
use feature n as the class label. (default: the last feature)
.RE
.B \-t
file
.RS
test using 'file'
.RE
.B \-t
leave_one_out
.RS
test with the leave\(hyone\(hyout testing regimen (IB1 only).
you may add \-\-sloppy to speed up leave\(hyone\(hyout testing (but see docs)
.RE
.B \-t
cross_validate
.RS
perform cross\(hyvalidation test (IB1 only)
.RE
.B \-t
@file
.RS
test using files and options described in 'file'
Supported options: d e F k m o p q R t u v w x % \-
.RE
.B \-\-Treeorder =value
n
.RS
ordering of the Tree:
DO: none
GRO: using GainRatio
IGO: using InformationGain
1/V: using 1/# of Values
G/V: using GainRatio/# of Valuess
I/V: using InfoGain/# of Valuess
X2O: using X\(hysquare
X/V: using X\(hysquare/# of Values
SVO: using Shared Variance
S/V: using Shared Variance/# of Values
GxE: using GainRatio * SplitInfo
IxE: using InformationGain * SplitInfo
1/S: using 1/SplitInfo
.RE
.B \-u
file
.RS
read value\(hyclass probabilities from 'file'
.RE
.B \-U
file
.RS
save value\(hyclass probabilities in 'file'
.RE
.B \-V
.RS
Show VERSION
.RE
.B +v
level or
.B \-v
level
.RS
set or unset verbosity level, where level is:
s: work silently
o: show all options set
b: show node/branch count and branching factor
f: show calculated feature weights (default)
p: show value difference matrices
e: show exact matches
as: show advanced statistics (memory consuming)
cm: show confusion matrix (implies +vas)
cs: show per\(hyclass statistics (implies +vas)
cf: add confidence to output file (needs \-G)
di: add distance to output file
db: add distribution of best matched to output file
md: add matching depth to output file.
k: add a summary for all k neigbors to output file (sets \-x)
n: add nearest neigbors to output file (sets \-x)
You may combine levels using '+' e.g. +v p+db or \-v o+di
.RE
.B \-w
n
.RS
weighting
0 or nw: no weighting
1 or gr: weigh using gain ratio (default)
2 or ig: weigh using information gain
3 or x2: weigh using the chi\(hysquare statistic
4 or sv: weigh using the shared variance statistic
5 or sd: weigh using standard deviation. (all features must be numeric)
.RE
.B \-w
file
.RS
read weights from 'file'
.RE
.B \-w
file:n
.RS
read weight n from 'file'
.RE
.B \-W
file
.RS
calculate and save all weights in 'file'
.RE
.B +%
or
.B \-%
.RS
do or don't save test result (%) to file
.RE
.B +x
or
.B \-x
.RS
do or don't use the exact match shortcut
(IB1 and IB2 only, default is \-x)
.RE
.BR \-X " file"
.RS
dump the InstanceBase as XML in 'file'
.RE
.SH BUGS
possibly
.SH AUTHORS
Ko van der Sloot Timbl@uvt.nl
Antal van den Bosch Timbl@uvt.nl
.SH SEE ALSO
.BR timblserver (1)
|