1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
/* File: z-rand.c */
/* Purpose: a simple random number generator -BEN- */
#include "z-rand.h"
/*
* Angband 2.7.9 introduced a new (optimized) random number generator,
* based loosely on the old "random.c" from Berkeley but with some major
* optimizations and algorithm changes. See below for more details.
*
* Code by myself (benh@phial.com) and Randy (randy@stat.tamu.edu).
*
* This code provides (1) a "decent" RNG, based on the "BSD-degree-63-RNG"
* used in Angband 2.7.8, but rather optimized, and (2) a "simple" RNG,
* based on the simple "LCRNG" currently used in Angband, but "corrected"
* to give slightly better values. Both of these are available in two
* flavors, first, the simple "mod" flavor, which is fast, but slightly
* biased at high values, and second, the simple "div" flavor, which is
* less fast (and potentially non-terminating) but which is not biased
* and is much less subject to low-bit-non-randomness problems.
*
* You can select your favorite flavor by proper definition of the
* "rand_int()" macro in the "defines.h" file.
*
* Note that, in Angband 2.8.0, the "state" table will be saved in the
* savefile, so a special "initialization" phase will be necessary.
*
* Note the use of the "simple" RNG, first you activate it via
* "Rand_quick = TRUE" and "Rand_value = seed" and then it is used
* automatically used instead of the "complex" RNG, and when you are
* done, you de-activate it via "Rand_quick = FALSE" or choose a new
* seed via "Rand_value = seed".
*/
/*
* Random Number Generator -- Linear Congruent RNG
*/
#define LCRNG(X) ((X) * 1103515245 + 12345)
/*
* Use the "simple" LCRNG
*/
bool Rand_quick = TRUE;
/*
* Current "value" of the "simple" RNG
*/
u32b Rand_value;
/*
* Current "index" for the "complex" RNG
*/
u16b Rand_place;
/*
* Current "state" table for the "complex" RNG
*/
u32b Rand_state[RAND_DEG];
/*
* Initialize the "complex" RNG using a new seed
*/
void Rand_state_init(u32b seed)
{
int i, j;
/* Seed the table */
Rand_state[0] = seed;
/* Propagate the seed */
for (i = 1; i < RAND_DEG; i++) Rand_state[i] = LCRNG(Rand_state[i - 1]);
/* Cycle the table ten times per degree */
for (i = 0; i < RAND_DEG * 10; i++)
{
/* Acquire the next index */
j = Rand_place + 1;
if (j == RAND_DEG) j = 0;
/* Update the table, extract an entry */
Rand_state[j] += Rand_state[Rand_place];
/* Advance the index */
Rand_place = j;
}
}
/*
* Extract a "random" number from 0 to m-1, via "modulus"
*
* Note that "m" should probably be less than 500000, or the
* results may be rather biased towards low values.
*/
s32b Rand_mod(s32b m)
{
int j;
u32b r;
/* Hack -- simple case */
if (m <= 1) return (0);
/* Use the "simple" RNG */
if (Rand_quick)
{
/* Cycle the generator */
r = (Rand_value = LCRNG(Rand_value));
/* Mutate a 28-bit "random" number */
r = (r >> 4) % m;
}
/* Use the "complex" RNG */
else
{
/* Acquire the next index */
j = Rand_place + 1;
if (j == RAND_DEG) j = 0;
/* Update the table, extract an entry */
r = (Rand_state[j] += Rand_state[Rand_place]);
/* Advance the index */
Rand_place = j;
/* Extract a "random" number */
r = (r >> 4) % m;
}
/* Use the value */
return (r);
}
/*
* Extract a "random" number from 0 to m-1, via "division"
*
* This method selects "random" 28-bit numbers, and then uses
* division to drop those numbers into "m" different partitions,
* plus a small non-partition to reduce bias, taking as the final
* value the first "good" partition that a number falls into.
*
* This method has no bias, and is much less affected by patterns
* in the "low" bits of the underlying RNG's.
*/
s32b Rand_div(s32b m)
{
u32b r, n;
/* Hack -- simple case */
if (m <= 1) return (0);
/* Partition size */
n = (0x10000000 / m);
/* Use a simple RNG */
if (Rand_quick)
{
/* Wait for it */
while (1)
{
/* Cycle the generator */
r = (Rand_value = LCRNG(Rand_value));
/* Mutate a 28-bit "random" number */
r = ((r >> 4) & 0x0FFFFFFF) / n;
/* Done */
if (r < (u32b)m) break;
}
}
/* Use a complex RNG */
else
{
/* Wait for it */
while (1)
{
int j;
/* Acquire the next index */
j = Rand_place + 1;
if (j == RAND_DEG) j = 0;
/* Update the table, extract an entry */
r = (Rand_state[j] += Rand_state[Rand_place]);
/* Hack -- extract a 28-bit "random" number */
r = ((r >> 4) & 0x0FFFFFFF) / n;
/* Advance the index */
Rand_place = j;
/* Done */
if (r < (u32b)m) break;
}
}
/* Use the value */
return (r);
}
/*
* The number of entries in the "randnor_table"
*/
#define RANDNOR_NUM 256
/*
* The standard deviation of the "randnor_table"
*/
#define RANDNOR_STD 64
/*
* The normal distribution table for the "randnor()" function (below)
*/
static s16b randnor_table[RANDNOR_NUM] =
{
206, 613, 1022, 1430, 1838, 2245, 2652, 3058,
3463, 3867, 4271, 4673, 5075, 5475, 5874, 6271,
6667, 7061, 7454, 7845, 8234, 8621, 9006, 9389,
9770, 10148, 10524, 10898, 11269, 11638, 12004, 12367,
12727, 13085, 13440, 13792, 14140, 14486, 14828, 15168,
15504, 15836, 16166, 16492, 16814, 17133, 17449, 17761,
18069, 18374, 18675, 18972, 19266, 19556, 19842, 20124,
20403, 20678, 20949, 21216, 21479, 21738, 21994, 22245,
22493, 22737, 22977, 23213, 23446, 23674, 23899, 24120,
24336, 24550, 24759, 24965, 25166, 25365, 25559, 25750,
25937, 26120, 26300, 26476, 26649, 26818, 26983, 27146,
27304, 27460, 27612, 27760, 27906, 28048, 28187, 28323,
28455, 28585, 28711, 28835, 28955, 29073, 29188, 29299,
29409, 29515, 29619, 29720, 29818, 29914, 30007, 30098,
30186, 30272, 30356, 30437, 30516, 30593, 30668, 30740,
30810, 30879, 30945, 31010, 31072, 31133, 31192, 31249,
31304, 31358, 31410, 31460, 31509, 31556, 31601, 31646,
31688, 31730, 31770, 31808, 31846, 31882, 31917, 31950,
31983, 32014, 32044, 32074, 32102, 32129, 32155, 32180,
32205, 32228, 32251, 32273, 32294, 32314, 32333, 32352,
32370, 32387, 32404, 32420, 32435, 32450, 32464, 32477,
32490, 32503, 32515, 32526, 32537, 32548, 32558, 32568,
32577, 32586, 32595, 32603, 32611, 32618, 32625, 32632,
32639, 32645, 32651, 32657, 32662, 32667, 32672, 32677,
32682, 32686, 32690, 32694, 32698, 32702, 32705, 32708,
32711, 32714, 32717, 32720, 32722, 32725, 32727, 32729,
32731, 32733, 32735, 32737, 32739, 32740, 32742, 32743,
32745, 32746, 32747, 32748, 32749, 32750, 32751, 32752,
32753, 32754, 32755, 32756, 32757, 32757, 32758, 32758,
32759, 32760, 32760, 32761, 32761, 32761, 32762, 32762,
32763, 32763, 32763, 32764, 32764, 32764, 32764, 32765,
32765, 32765, 32765, 32766, 32766, 32766, 32766, 32767,
};
/*
* Generate a random integer number of NORMAL distribution
*
* The table above is used to generate a psuedo-normal distribution,
* in a manner which is much faster than calling a transcendental
* function to calculate a true normal distribution.
*
* Basically, entry 64*N in the table above represents the number of
* times out of 32767 that a random variable with normal distribution
* will fall within N standard deviations of the mean. That is, about
* 68 percent of the time for N=1 and 95 percent of the time for N=2.
*
* The table above contains a "faked" final entry which allows us to
* pretend that all values in a normal distribution are strictly less
* than four standard deviations away from the mean. This results in
* "conservative" distribution of approximately 1/32768 values.
*
* Note that the binary search takes up to 16 quick iterations.
*/
s16b randnor(int mean, int stand)
{
s16b tmp;
s16b offset;
s16b low = 0;
s16b high = RANDNOR_NUM;
/* Paranoia */
if (stand < 1) return (mean);
/* Roll for probability */
tmp = (s16b)rand_int(32768);
/* Binary Search */
while (low < high)
{
int mid = (low + high) >> 1;
/* Move right if forced */
if (randnor_table[mid] < tmp)
{
low = mid + 1;
}
/* Move left otherwise */
else
{
high = mid;
}
}
/* Convert the index into an offset */
offset = (long)stand * (long)low / RANDNOR_STD;
/* One half should be negative */
if (rand_int(100) < 50) return (mean - offset);
/* One half should be positive */
return (mean + offset);
}
/*
* Generates damage for "2d6" style dice rolls
*/
s32b damroll(s16b num, s16b sides)
{
int i;
s32b sum = 0;
for (i = 0; i < num; i++) sum += randint(sides);
return (sum);
}
/*
* Same as above, but always maximal
*/
s32b maxroll(s16b num, s16b sides)
{
return (num * sides);
}
|