1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_LEXER_HPP
#define TOML11_LEXER_HPP
#include <istream>
#include <sstream>
#include <stdexcept>
#include <fstream>
#include "combinator.hpp"
namespace toml
{
namespace detail
{
// these scans contents from current location in a container of char
// and extract a region that matches their own pattern.
// to see the implementation of each component, see combinator.hpp.
using lex_wschar = either<character<' '>, character<'\t'>>;
using lex_ws = repeat<lex_wschar, at_least<1>>;
using lex_newline = either<character<'\n'>,
sequence<character<'\r'>, character<'\n'>>>;
using lex_lower = in_range<'a', 'z'>;
using lex_upper = in_range<'A', 'Z'>;
using lex_alpha = either<lex_lower, lex_upper>;
using lex_digit = in_range<'0', '9'>;
using lex_nonzero = in_range<'1', '9'>;
using lex_oct_dig = in_range<'0', '7'>;
using lex_bin_dig = in_range<'0', '1'>;
using lex_hex_dig = either<lex_digit, in_range<'A', 'F'>, in_range<'a', 'f'>>;
using lex_hex_prefix = sequence<character<'0'>, character<'x'>>;
using lex_oct_prefix = sequence<character<'0'>, character<'o'>>;
using lex_bin_prefix = sequence<character<'0'>, character<'b'>>;
using lex_underscore = character<'_'>;
using lex_plus = character<'+'>;
using lex_minus = character<'-'>;
using lex_sign = either<lex_plus, lex_minus>;
// digit | nonzero 1*(digit | _ digit)
using lex_unsigned_dec_int = either<sequence<lex_nonzero, repeat<
either<lex_digit, sequence<lex_underscore, lex_digit>>, at_least<1>>>,
lex_digit>;
// (+|-)? unsigned_dec_int
using lex_dec_int = sequence<maybe<lex_sign>, lex_unsigned_dec_int>;
// hex_prefix hex_dig *(hex_dig | _ hex_dig)
using lex_hex_int = sequence<lex_hex_prefix, sequence<lex_hex_dig, repeat<
either<lex_hex_dig, sequence<lex_underscore, lex_hex_dig>>, unlimited>>>;
// oct_prefix oct_dig *(oct_dig | _ oct_dig)
using lex_oct_int = sequence<lex_oct_prefix, sequence<lex_oct_dig, repeat<
either<lex_oct_dig, sequence<lex_underscore, lex_oct_dig>>, unlimited>>>;
// bin_prefix bin_dig *(bin_dig | _ bin_dig)
using lex_bin_int = sequence<lex_bin_prefix, sequence<lex_bin_dig, repeat<
either<lex_bin_dig, sequence<lex_underscore, lex_bin_dig>>, unlimited>>>;
// (dec_int | hex_int | oct_int | bin_int)
using lex_integer = either<lex_bin_int, lex_oct_int, lex_hex_int, lex_dec_int>;
// ===========================================================================
using lex_inf = sequence<character<'i'>, character<'n'>, character<'f'>>;
using lex_nan = sequence<character<'n'>, character<'a'>, character<'n'>>;
using lex_special_float = sequence<maybe<lex_sign>, either<lex_inf, lex_nan>>;
using lex_zero_prefixable_int = sequence<lex_digit, repeat<either<lex_digit,
sequence<lex_underscore, lex_digit>>, unlimited>>;
using lex_fractional_part = sequence<character<'.'>, lex_zero_prefixable_int>;
using lex_exponent_part = sequence<either<character<'e'>, character<'E'>>,
maybe<lex_sign>, lex_zero_prefixable_int>;
using lex_float = either<lex_special_float,
sequence<lex_dec_int, either<lex_exponent_part,
sequence<lex_fractional_part, maybe<lex_exponent_part>>>>>;
// ===========================================================================
using lex_true = sequence<character<'t'>, character<'r'>,
character<'u'>, character<'e'>>;
using lex_false = sequence<character<'f'>, character<'a'>, character<'l'>,
character<'s'>, character<'e'>>;
using lex_boolean = either<lex_true, lex_false>;
// ===========================================================================
using lex_date_fullyear = repeat<lex_digit, exactly<4>>;
using lex_date_month = repeat<lex_digit, exactly<2>>;
using lex_date_mday = repeat<lex_digit, exactly<2>>;
using lex_time_delim = either<character<'T'>, character<'t'>, character<' '>>;
using lex_time_hour = repeat<lex_digit, exactly<2>>;
using lex_time_minute = repeat<lex_digit, exactly<2>>;
using lex_time_second = repeat<lex_digit, exactly<2>>;
using lex_time_secfrac = sequence<character<'.'>,
repeat<lex_digit, at_least<1>>>;
using lex_time_numoffset = sequence<either<character<'+'>, character<'-'>>,
sequence<lex_time_hour, character<':'>,
lex_time_minute>>;
using lex_time_offset = either<character<'Z'>, character<'z'>,
lex_time_numoffset>;
using lex_partial_time = sequence<lex_time_hour, character<':'>,
lex_time_minute, character<':'>,
lex_time_second, maybe<lex_time_secfrac>>;
using lex_full_date = sequence<lex_date_fullyear, character<'-'>,
lex_date_month, character<'-'>,
lex_date_mday>;
using lex_full_time = sequence<lex_partial_time, lex_time_offset>;
using lex_offset_date_time = sequence<lex_full_date, lex_time_delim, lex_full_time>;
using lex_local_date_time = sequence<lex_full_date, lex_time_delim, lex_partial_time>;
using lex_local_date = lex_full_date;
using lex_local_time = lex_partial_time;
// ===========================================================================
using lex_quotation_mark = character<'"'>;
using lex_basic_unescaped = exclude<either<in_range<0x00, 0x08>, // 0x09 (tab) is allowed
in_range<0x0A, 0x1F>,
character<0x22>, character<0x5C>,
character<0x7F>>>;
using lex_escape = character<'\\'>;
using lex_escape_unicode_short = sequence<character<'u'>,
repeat<lex_hex_dig, exactly<4>>>;
using lex_escape_unicode_long = sequence<character<'U'>,
repeat<lex_hex_dig, exactly<8>>>;
using lex_escape_seq_char = either<character<'"'>, character<'\\'>,
character<'b'>, character<'f'>,
character<'n'>, character<'r'>,
character<'t'>,
lex_escape_unicode_short,
lex_escape_unicode_long
>;
using lex_escaped = sequence<lex_escape, lex_escape_seq_char>;
using lex_basic_char = either<lex_basic_unescaped, lex_escaped>;
using lex_basic_string = sequence<lex_quotation_mark,
repeat<lex_basic_char, unlimited>,
lex_quotation_mark>;
// After toml post-v0.5.0, it is explicitly clarified how quotes in ml-strings
// are allowed to be used.
// After this, the following strings are *explicitly* allowed.
// - One or two `"`s in a multi-line basic string is allowed wherever it is.
// - Three consecutive `"`s in a multi-line basic string is considered as a delimiter.
// - One or two `"`s can appear just before or after the delimiter.
// ```toml
// str4 = """Here are two quotation marks: "". Simple enough."""
// str5 = """Here are three quotation marks: ""\"."""
// str6 = """Here are fifteen quotation marks: ""\"""\"""\"""\"""\"."""
// str7 = """"This," she said, "is just a pointless statement.""""
// ```
// In the current implementation (v3.3.0), it is difficult to parse `str7` in
// the above example. It is difficult to recognize `"` at the end of string body
// collectly. It will be misunderstood as a `"""` delimiter and an additional,
// invalid `"`. Like this:
// ```console
// what(): [error] toml::parse_table: invalid line format
// --> hoge.toml
// |
// 13 | str7 = """"This," she said, "is just a pointless statement.""""
// | ^- expected newline, but got '"'.
// ```
// As a quick workaround for this problem, `lex_ml_basic_string_delim` was
// split into two, `lex_ml_basic_string_open` and `lex_ml_basic_string_close`.
// `lex_ml_basic_string_open` allows only `"""`. `_close` allows 3-5 `"`s.
// In parse_ml_basic_string() function, the trailing `"`s will be attached to
// the string body.
//
using lex_ml_basic_string_delim = repeat<lex_quotation_mark, exactly<3>>;
using lex_ml_basic_string_open = lex_ml_basic_string_delim;
using lex_ml_basic_string_close = sequence<
repeat<lex_quotation_mark, exactly<3>>,
maybe<lex_quotation_mark>, maybe<lex_quotation_mark>
>;
using lex_ml_basic_unescaped = exclude<either<in_range<0x00, 0x08>, // 0x09 is tab
in_range<0x0A, 0x1F>,
character<0x5C>, // backslash
character<0x7F>, // DEL
lex_ml_basic_string_delim>>;
using lex_ml_basic_escaped_newline = sequence<
lex_escape, maybe<lex_ws>, lex_newline,
repeat<either<lex_ws, lex_newline>, unlimited>>;
using lex_ml_basic_char = either<lex_ml_basic_unescaped, lex_escaped>;
using lex_ml_basic_body = repeat<either<lex_ml_basic_char, lex_newline,
lex_ml_basic_escaped_newline>,
unlimited>;
using lex_ml_basic_string = sequence<lex_ml_basic_string_open,
lex_ml_basic_body,
lex_ml_basic_string_close>;
using lex_literal_char = exclude<either<in_range<0x00, 0x08>, in_range<0x0A, 0x1F>,
character<0x7F>, character<0x27>>>;
using lex_apostrophe = character<'\''>;
using lex_literal_string = sequence<lex_apostrophe,
repeat<lex_literal_char, unlimited>,
lex_apostrophe>;
// the same reason as above.
using lex_ml_literal_string_delim = repeat<lex_apostrophe, exactly<3>>;
using lex_ml_literal_string_open = lex_ml_literal_string_delim;
using lex_ml_literal_string_close = sequence<
repeat<lex_apostrophe, exactly<3>>,
maybe<lex_apostrophe>, maybe<lex_apostrophe>
>;
using lex_ml_literal_char = exclude<either<in_range<0x00, 0x08>,
in_range<0x0A, 0x1F>,
character<0x7F>,
lex_ml_literal_string_delim>>;
using lex_ml_literal_body = repeat<either<lex_ml_literal_char, lex_newline>,
unlimited>;
using lex_ml_literal_string = sequence<lex_ml_literal_string_open,
lex_ml_literal_body,
lex_ml_literal_string_close>;
using lex_string = either<lex_ml_basic_string, lex_basic_string,
lex_ml_literal_string, lex_literal_string>;
// ===========================================================================
using lex_dot_sep = sequence<maybe<lex_ws>, character<'.'>, maybe<lex_ws>>;
using lex_unquoted_key = repeat<either<lex_alpha, lex_digit,
character<'-'>, character<'_'>>,
at_least<1>>;
using lex_quoted_key = either<lex_basic_string, lex_literal_string>;
using lex_simple_key = either<lex_unquoted_key, lex_quoted_key>;
using lex_dotted_key = sequence<lex_simple_key,
repeat<sequence<lex_dot_sep, lex_simple_key>,
at_least<1>
>
>;
using lex_key = either<lex_dotted_key, lex_simple_key>;
using lex_keyval_sep = sequence<maybe<lex_ws>,
character<'='>,
maybe<lex_ws>>;
using lex_std_table_open = character<'['>;
using lex_std_table_close = character<']'>;
using lex_std_table = sequence<lex_std_table_open,
maybe<lex_ws>,
lex_key,
maybe<lex_ws>,
lex_std_table_close>;
using lex_array_table_open = sequence<lex_std_table_open, lex_std_table_open>;
using lex_array_table_close = sequence<lex_std_table_close, lex_std_table_close>;
using lex_array_table = sequence<lex_array_table_open,
maybe<lex_ws>,
lex_key,
maybe<lex_ws>,
lex_array_table_close>;
using lex_utf8_1byte = in_range<0x00, 0x7F>;
using lex_utf8_2byte = sequence<
in_range<static_cast<char>(0xC2), static_cast<char>(0xDF)>,
in_range<static_cast<char>(0x80), static_cast<char>(0xBF)>
>;
using lex_utf8_3byte = sequence<either<
sequence<character<static_cast<char>(0xE0)>, in_range<static_cast<char>(0xA0), static_cast<char>(0xBF)>>,
sequence<in_range <static_cast<char>(0xE1), static_cast<char>(0xEC)>, in_range<static_cast<char>(0x80), static_cast<char>(0xBF)>>,
sequence<character<static_cast<char>(0xED)>, in_range<static_cast<char>(0x80), static_cast<char>(0x9F)>>,
sequence<in_range <static_cast<char>(0xEE), static_cast<char>(0xEF)>, in_range<static_cast<char>(0x80), static_cast<char>(0xBF)>>
>, in_range<static_cast<char>(0x80), static_cast<char>(0xBF)>>;
using lex_utf8_4byte = sequence<either<
sequence<character<static_cast<char>(0xF0)>, in_range<static_cast<char>(0x90), static_cast<char>(0xBF)>>,
sequence<in_range <static_cast<char>(0xF1), static_cast<char>(0xF3)>, in_range<static_cast<char>(0x80), static_cast<char>(0xBF)>>,
sequence<character<static_cast<char>(0xF4)>, in_range<static_cast<char>(0x80), static_cast<char>(0x8F)>>
>, in_range<static_cast<char>(0x80), static_cast<char>(0xBF)>,
in_range<static_cast<char>(0x80), static_cast<char>(0xBF)>>;
using lex_utf8_code = either<
lex_utf8_1byte,
lex_utf8_2byte,
lex_utf8_3byte,
lex_utf8_4byte
>;
using lex_comment_start_symbol = character<'#'>;
using lex_non_eol_ascii = either<character<0x09>, in_range<0x20, 0x7E>>;
using lex_comment = sequence<lex_comment_start_symbol, repeat<either<
lex_non_eol_ascii, lex_utf8_2byte, lex_utf8_3byte, lex_utf8_4byte>, unlimited>>;
} // detail
} // toml
#endif // TOML_LEXER_HPP
|