[go: up one dir, main page]

blob: b676768c114037dc9ebde44e758e1817ce777eb3 [file] [log] [blame]
// Copyright 2025 The ANGLE Project Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This is Chromium's base/containers/span.h, modified to support C++17
// as part of the PDFium project, stubbed to be self-contained, and then
// modified to conform to ANGLE:
// -- fixed missing constexpr as exercised by test.
// -- added operator==().
#ifndef COMMON_SPAN_H_
#define COMMON_SPAN_H_
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <array>
#include <iterator>
#include <type_traits>
#include <utility>
#include "common/base/anglebase/logging.h"
#include "common/unsafe_buffers.h"
namespace angle
{
constexpr size_t dynamic_extent = static_cast<size_t>(-1);
template <typename T>
using DefaultSpanInternalPtr = T *;
template <typename T,
size_t Extent = dynamic_extent,
typename InternalPtr = DefaultSpanInternalPtr<T>>
class Span;
namespace internal
{
template <typename T>
struct IsSpanImpl : std::false_type
{};
template <typename T>
struct IsSpanImpl<Span<T>> : std::true_type
{};
template <typename T>
using IsSpan = IsSpanImpl<typename std::decay<T>::type>;
template <typename T>
struct IsStdArrayImpl : std::false_type
{};
template <typename T, size_t N>
struct IsStdArrayImpl<std::array<T, N>> : std::true_type
{};
template <typename T>
using IsStdArray = IsStdArrayImpl<typename std::decay<T>::type>;
template <typename From, typename To>
using IsLegalSpanConversion = std::is_convertible<From *, To *>;
template <typename Container, typename T>
using ContainerHasConvertibleData = IsLegalSpanConversion<
typename std::remove_pointer<decltype(std::declval<Container>().data())>::type,
T>;
template <typename Container>
using ContainerHasIntegralSize = std::is_integral<decltype(std::declval<Container>().size())>;
template <typename From, typename To>
using EnableIfLegalSpanConversion =
typename std::enable_if<IsLegalSpanConversion<From, To>::value>::type;
// SFINAE check if Container can be converted to a Span<T>. Note that the
// implementation details of this check differ slightly from the requirements in
// the working group proposal: in particular, the proposal also requires that
// the container conversion constructor participate in overload resolution only
// if two additional conditions are true:
//
// 1. Container implements operator[].
// 2. Container::value_type matches remove_const_t<element_type>.
//
// The requirements are relaxed slightly here: in particular, not requiring (2)
// means that an immutable Span can be easily constructed from a mutable
// container.
template <typename Container, typename T>
using EnableIfSpanCompatibleContainer =
typename std::enable_if<!internal::IsSpan<Container>::value &&
!internal::IsStdArray<Container>::value &&
ContainerHasConvertibleData<Container, T>::value &&
ContainerHasIntegralSize<Container>::value>::type;
template <typename Container, typename T>
using EnableIfConstSpanCompatibleContainer =
typename std::enable_if<std::is_const<T>::value && !internal::IsSpan<Container>::value &&
!internal::IsStdArray<Container>::value &&
ContainerHasConvertibleData<Container, T>::value &&
ContainerHasIntegralSize<Container>::value>::type;
} // namespace internal
// A Span is a value type that represents an array of elements of type T. Since
// it only consists of a pointer to memory with an associated size, it is very
// light-weight. It is cheap to construct, copy, move and use spans, so that
// users are encouraged to use it as a pass-by-value parameter. A Span does not
// own the underlying memory, so care must be taken to ensure that a Span does
// not outlive the backing store.
//
// Differences from the working group proposal
// -------------------------------------------
//
// https://wg21.link/P0122 is the latest working group proposal, Chromium
// currently implements R6.
//
// Differences in constants and types:
// - Span has a capital "S".
// - Allows custom smart pointer types in internal representation, if desired.
// - no element_type type alias
// - no index_type type alias
// - no different_type type alias
// - no extent constant
//
// Differences from [span.cons]:
// - no constructor from a pointer range
//
// Differences from [span.sub]:
// - using size_t instead of ptrdiff_t for indexing
//
// Differences from [span.obs]:
// - using size_t instead of ptrdiff_t to represent size()
//
// Differences from [span.elem]:
// - no operator ()()
// - using size_t instead of ptrdiff_t for indexing
//
// Additions beyond the C++ standard draft
// - as_chars() function.
// - as_writable_chars() function.
// - as_byte_span() function.
// - as_writable_byte_span() function.
// - span_from_ref() function.
// - byte_span_from_ref() function.
// [span], class template span
template <typename T, size_t Extent, typename InternalPtr>
class Span
{
public:
using value_type = typename std::remove_cv<T>::type;
using pointer = T *;
using reference = T &;
using iterator = T *;
using const_iterator = const T *;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
// [span.cons], span constructors, copy, assignment, and destructor
constexpr Span() noexcept = default;
ANGLE_UNSAFE_BUFFER_USAGE constexpr Span(T *data, size_t size) noexcept
: data_(data), size_(size)
{
DCHECK(data_ || size_ == 0);
}
// TODO(dcheng): Implement construction from a |begin| and |end| pointer.
template <size_t N>
constexpr Span(T (&array)[N]) noexcept
// SAFETY: The type signature guarantees `array` contains `N` elements.
: ANGLE_UNSAFE_BUFFERS(Span(array, N))
{
static_assert(Extent == dynamic_extent || Extent == N);
}
template <size_t N>
constexpr Span(std::array<T, N> &array) noexcept
// SAFETY: The type signature guarantees `array` contains `N` elements.
: ANGLE_UNSAFE_BUFFERS(Span(array.data(), N))
{
static_assert(Extent == dynamic_extent || Extent == N);
}
template <size_t N>
constexpr Span(const std::array<T, N> &array) noexcept
// SAFETY: The type signature guarantees `array` contains `N` elements.
: ANGLE_UNSAFE_BUFFERS(Span(array.data(), N))
{
static_assert(Extent == dynamic_extent || Extent == N);
}
// Conversion from a container that provides |T* data()| and |integral_type
// size()|. Note that |data()| may not return nullptr for some empty
// containers, which can lead to container overflow errors when probing
// raw ptrs.
template <typename Container,
typename = internal::EnableIfSpanCompatibleContainer<Container, T>>
constexpr Span(Container &container)
// SAFETY: `size()` is the number of elements that can be safely accessed
// at `data()`.
: ANGLE_UNSAFE_BUFFERS(Span(container.data(), container.size()))
{}
template <typename Container,
typename = internal::EnableIfConstSpanCompatibleContainer<Container, T>>
constexpr Span(const Container &container)
// SAFETY: `size()` is exactly the number of elements in the initializer
// list, so accessing that many will be safe.
: ANGLE_UNSAFE_BUFFERS(Span(container.data(), container.size()))
{}
constexpr Span(const Span &other) noexcept = default;
// Conversions from spans of compatible types: this allows a Span<T> to be
// seamlessly used as a Span<const T>, but not the other way around.
template <typename U,
size_t M,
typename R,
typename = internal::EnableIfLegalSpanConversion<U, T>>
constexpr Span(const Span<U, M, R> &other)
// SAFETY: `size()` is the number of elements that can be safely accessed
// at `data()`.
: ANGLE_UNSAFE_BUFFERS(Span(other.data(), other.size()))
{
static_assert(Extent == dynamic_extent || Extent == M,
"Assigning to fixed span from incompatible span");
}
Span &operator=(const Span &other) noexcept = default;
Span &operator=(Span &&other) noexcept = default;
~Span() noexcept = default;
template <typename U, size_t M>
bool operator==(const Span<U, M> &other) const
{
return std::equal(begin(), end(), other.begin(), other.end());
}
template <typename U, size_t M>
bool operator!=(const Span<U, M> &other) const
{
return !std::equal(begin(), end(), other.begin(), other.end());
}
// [span.sub], span subviews
template <size_t Count>
constexpr Span<T, Count> first() const
{
// TODO(tsepez): The following assert isn't yet good enough to replace
// the runtime check since we are still allowing unchecked conversions
// to arbitrary non-dynamic_extent spans.
static_assert(Extent == dynamic_extent || Count <= Extent);
CHECK(Count <= size_);
// SAFETY: CHECK() on line above.
return ANGLE_UNSAFE_BUFFERS(Span<T, Count>(data(), Count));
}
constexpr Span<T, dynamic_extent> first(size_t count) const
{
CHECK(count <= size_);
// SAFETY: CHECK() on line above.
return ANGLE_UNSAFE_BUFFERS(Span(static_cast<T *>(data_), count));
}
template <size_t Count>
constexpr Span<T, Count> last() const
{
// TODO(tsepez): The following assert isn't yet good enough to replace
// the runtime check since we are still allowing unchecked conversions
// to arbitrary non-dynamic_extent spans.
static_assert(Extent == dynamic_extent || Count <= Extent);
CHECK(Count <= size_);
// SAFETY: CHECK() on line above.
return ANGLE_UNSAFE_BUFFERS(Span<T, Count>(data() + (size_ - Count), Count));
}
constexpr Span<T, dynamic_extent> last(size_t count) const
{
CHECK(count <= size_);
// SAFETY: CHECK() on line above.
return ANGLE_UNSAFE_BUFFERS(Span(static_cast<T *>(data_) + (size_ - count), count));
}
template <size_t Offset, size_t Count = dynamic_extent>
constexpr Span<T, dynamic_extent> subspan() const
{
// TODO(tsepez): The following check isn't yet good enough to replace
// the runtime check since we are still allowing unchecked conversions
// to arbitrary non-dynamic_extent spans.
static_assert(Extent == dynamic_extent || Count == dynamic_extent ||
Offset + Count <= Extent);
return subspan(Offset, Count);
}
constexpr Span<T, dynamic_extent> subspan(size_t pos, size_t count = dynamic_extent) const
{
CHECK(pos <= size_);
CHECK(count == dynamic_extent || count <= size_ - pos);
// SAFETY: CHECK()s on lines above.
return ANGLE_UNSAFE_BUFFERS(
Span(static_cast<T *>(data_) + pos, count == dynamic_extent ? size_ - pos : count));
}
// [span.obs], span observers
constexpr size_t size() const noexcept { return size_; }
constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); }
constexpr bool empty() const noexcept { return size_ == 0; }
// [span.elem], span element access
T &operator[](size_t index) const noexcept
{
CHECK(index < size_);
return ANGLE_UNSAFE_BUFFERS(static_cast<T *>(data_)[index]);
}
constexpr T &front() const noexcept
{
CHECK(!empty());
return *data();
}
constexpr T &back() const noexcept
{
CHECK(!empty());
return ANGLE_UNSAFE_BUFFERS(*(data() + size() - 1));
}
constexpr T *data() const noexcept { return static_cast<T *>(data_); }
// [span.iter], span iterator support
constexpr iterator begin() const noexcept { return static_cast<T *>(data_); }
constexpr iterator end() const noexcept { return ANGLE_UNSAFE_BUFFERS(begin() + size_); }
constexpr const_iterator cbegin() const noexcept { return begin(); }
constexpr const_iterator cend() const noexcept { return end(); }
constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator(end()); }
constexpr reverse_iterator rend() const noexcept { return reverse_iterator(begin()); }
constexpr const_reverse_iterator crbegin() const noexcept
{
return const_reverse_iterator(cend());
}
constexpr const_reverse_iterator crend() const noexcept
{
return const_reverse_iterator(cbegin());
}
private:
InternalPtr data_ = nullptr;
size_t size_ = 0;
};
// Deduction guides.
template <typename T, size_t N>
Span(T (&)[N]) -> Span<T, N>;
template <typename T, size_t N>
Span(const T (&)[N]) -> Span<const T, N>;
template <typename T, size_t N>
Span(std::array<T, N> &) -> Span<T, N>;
template <typename T, size_t N>
Span(const std::array<T, N> &) -> Span<const T, N>;
template <typename T>
Span(std::vector<T> &) -> Span<T>;
template <typename T>
Span(const std::vector<T> &) -> Span<const T>;
// [span.objectrep], views of object representation
template <typename T, size_t N, typename P>
Span<const uint8_t> as_bytes(Span<T, N, P> s) noexcept
{
// SAFETY: from size_bytes() method.
return ANGLE_UNSAFE_BUFFERS(
Span<const uint8_t>(reinterpret_cast<const uint8_t *>(s.data()), s.size_bytes()));
}
template <typename T,
size_t N,
typename P,
typename U = typename std::enable_if<!std::is_const<T>::value>::type>
Span<uint8_t> as_writable_bytes(Span<T, N, P> s) noexcept
{
// SAFETY: from size_bytes() method.
return ANGLE_UNSAFE_BUFFERS(
Span<uint8_t>(reinterpret_cast<uint8_t *>(s.data()), s.size_bytes()));
}
template <typename T, size_t N, typename P>
Span<const char> as_chars(Span<T, N, P> s) noexcept
{
// SAFETY: from size_bytes() method.
return ANGLE_UNSAFE_BUFFERS(
Span<const char>(reinterpret_cast<const char *>(s.data()), s.size_bytes()));
}
template <typename T,
size_t N,
typename P,
typename U = typename std::enable_if<!std::is_const<T>::value>::type>
Span<char> as_writable_chars(Span<T, N, P> s) noexcept
{
// SAFETY: from size_bytes() method.
return ANGLE_UNSAFE_BUFFERS(Span<char>(reinterpret_cast<char *>(s.data()), s.size_bytes()));
}
// `span_from_ref` converts a reference to T into a span of length 1. This is a
// non-std helper that is inspired by the `std::slice::from_ref()` function from
// Rust.
template <typename T>
static constexpr Span<T> span_from_ref(T &single_object) noexcept
{
// SAFETY: single object passed by reference.
return ANGLE_UNSAFE_BUFFERS(Span<T>(&single_object, 1u));
}
// `byte_span_from_ref` converts a reference to T into a span of uint8_t of
// length sizeof(T). This is a non-std helper that is a sugar for
// `as_writable_bytes(span_from_ref(x))`.
template <typename T>
static constexpr Span<const uint8_t> byte_span_from_ref(const T &single_object) noexcept
{
return as_bytes(span_from_ref(single_object));
}
template <typename T>
static constexpr Span<uint8_t> byte_span_from_ref(T &single_object) noexcept
{
return as_writable_bytes(span_from_ref(single_object));
}
// Convenience function for converting an object which is itself convertible
// to span into a span of bytes (i.e. span of const uint8_t). Typically used
// to convert std::string or string-objects holding chars, or std::vector
// or vector-like objects holding other scalar types, prior to passing them
// into an API that requires byte spans.
template <typename T>
Span<const uint8_t> as_byte_span(const T &arg)
{
return as_bytes(Span(arg));
}
template <typename T>
Span<const uint8_t> as_byte_span(T &&arg)
{
return as_bytes(Span(arg));
}
// Convenience function for converting an object which is itself convertible
// to span into a span of mutable bytes (i.e. span of uint8_t). Typically used
// to convert std::string or string-objects holding chars, or std::vector
// or vector-like objects holding other scalar types, prior to passing them
// into an API that requires mutable byte spans.
template <typename T>
constexpr Span<uint8_t> as_writable_byte_span(T &&arg)
{
return as_writable_bytes(Span(arg));
}
} // namespace angle
#endif // COMMON_SPAN_H_