| // Copyright 2025 The ANGLE Project Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // This is Chromium's base/containers/span.h, modified to support C++17 |
| // as part of the PDFium project, stubbed to be self-contained, and then |
| // modified to conform to ANGLE: |
| // -- fixed missing constexpr as exercised by test. |
| // -- added operator==(). |
| |
| #ifndef COMMON_SPAN_H_ |
| #define COMMON_SPAN_H_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <algorithm> |
| #include <array> |
| #include <iterator> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "common/base/anglebase/logging.h" |
| #include "common/unsafe_buffers.h" |
| |
| namespace angle |
| { |
| |
| constexpr size_t dynamic_extent = static_cast<size_t>(-1); |
| |
| template <typename T> |
| using DefaultSpanInternalPtr = T *; |
| |
| template <typename T, |
| size_t Extent = dynamic_extent, |
| typename InternalPtr = DefaultSpanInternalPtr<T>> |
| class Span; |
| |
| namespace internal |
| { |
| |
| template <typename T> |
| struct IsSpanImpl : std::false_type |
| {}; |
| |
| template <typename T> |
| struct IsSpanImpl<Span<T>> : std::true_type |
| {}; |
| |
| template <typename T> |
| using IsSpan = IsSpanImpl<typename std::decay<T>::type>; |
| |
| template <typename T> |
| struct IsStdArrayImpl : std::false_type |
| {}; |
| |
| template <typename T, size_t N> |
| struct IsStdArrayImpl<std::array<T, N>> : std::true_type |
| {}; |
| |
| template <typename T> |
| using IsStdArray = IsStdArrayImpl<typename std::decay<T>::type>; |
| |
| template <typename From, typename To> |
| using IsLegalSpanConversion = std::is_convertible<From *, To *>; |
| |
| template <typename Container, typename T> |
| using ContainerHasConvertibleData = IsLegalSpanConversion< |
| typename std::remove_pointer<decltype(std::declval<Container>().data())>::type, |
| T>; |
| template <typename Container> |
| using ContainerHasIntegralSize = std::is_integral<decltype(std::declval<Container>().size())>; |
| |
| template <typename From, typename To> |
| using EnableIfLegalSpanConversion = |
| typename std::enable_if<IsLegalSpanConversion<From, To>::value>::type; |
| |
| // SFINAE check if Container can be converted to a Span<T>. Note that the |
| // implementation details of this check differ slightly from the requirements in |
| // the working group proposal: in particular, the proposal also requires that |
| // the container conversion constructor participate in overload resolution only |
| // if two additional conditions are true: |
| // |
| // 1. Container implements operator[]. |
| // 2. Container::value_type matches remove_const_t<element_type>. |
| // |
| // The requirements are relaxed slightly here: in particular, not requiring (2) |
| // means that an immutable Span can be easily constructed from a mutable |
| // container. |
| template <typename Container, typename T> |
| using EnableIfSpanCompatibleContainer = |
| typename std::enable_if<!internal::IsSpan<Container>::value && |
| !internal::IsStdArray<Container>::value && |
| ContainerHasConvertibleData<Container, T>::value && |
| ContainerHasIntegralSize<Container>::value>::type; |
| |
| template <typename Container, typename T> |
| using EnableIfConstSpanCompatibleContainer = |
| typename std::enable_if<std::is_const<T>::value && !internal::IsSpan<Container>::value && |
| !internal::IsStdArray<Container>::value && |
| ContainerHasConvertibleData<Container, T>::value && |
| ContainerHasIntegralSize<Container>::value>::type; |
| |
| } // namespace internal |
| |
| // A Span is a value type that represents an array of elements of type T. Since |
| // it only consists of a pointer to memory with an associated size, it is very |
| // light-weight. It is cheap to construct, copy, move and use spans, so that |
| // users are encouraged to use it as a pass-by-value parameter. A Span does not |
| // own the underlying memory, so care must be taken to ensure that a Span does |
| // not outlive the backing store. |
| // |
| // Differences from the working group proposal |
| // ------------------------------------------- |
| // |
| // https://wg21.link/P0122 is the latest working group proposal, Chromium |
| // currently implements R6. |
| // |
| // Differences in constants and types: |
| // - Span has a capital "S". |
| // - Allows custom smart pointer types in internal representation, if desired. |
| // - no element_type type alias |
| // - no index_type type alias |
| // - no different_type type alias |
| // - no extent constant |
| // |
| // Differences from [span.cons]: |
| // - no constructor from a pointer range |
| // |
| // Differences from [span.sub]: |
| // - using size_t instead of ptrdiff_t for indexing |
| // |
| // Differences from [span.obs]: |
| // - using size_t instead of ptrdiff_t to represent size() |
| // |
| // Differences from [span.elem]: |
| // - no operator ()() |
| // - using size_t instead of ptrdiff_t for indexing |
| // |
| // Additions beyond the C++ standard draft |
| // - as_chars() function. |
| // - as_writable_chars() function. |
| // - as_byte_span() function. |
| // - as_writable_byte_span() function. |
| // - span_from_ref() function. |
| // - byte_span_from_ref() function. |
| |
| // [span], class template span |
| template <typename T, size_t Extent, typename InternalPtr> |
| class Span |
| { |
| public: |
| using value_type = typename std::remove_cv<T>::type; |
| using pointer = T *; |
| using reference = T &; |
| using iterator = T *; |
| using const_iterator = const T *; |
| using reverse_iterator = std::reverse_iterator<iterator>; |
| using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| |
| // [span.cons], span constructors, copy, assignment, and destructor |
| constexpr Span() noexcept = default; |
| |
| ANGLE_UNSAFE_BUFFER_USAGE constexpr Span(T *data, size_t size) noexcept |
| : data_(data), size_(size) |
| { |
| DCHECK(data_ || size_ == 0); |
| } |
| |
| // TODO(dcheng): Implement construction from a |begin| and |end| pointer. |
| template <size_t N> |
| constexpr Span(T (&array)[N]) noexcept |
| // SAFETY: The type signature guarantees `array` contains `N` elements. |
| : ANGLE_UNSAFE_BUFFERS(Span(array, N)) |
| { |
| static_assert(Extent == dynamic_extent || Extent == N); |
| } |
| |
| template <size_t N> |
| constexpr Span(std::array<T, N> &array) noexcept |
| // SAFETY: The type signature guarantees `array` contains `N` elements. |
| : ANGLE_UNSAFE_BUFFERS(Span(array.data(), N)) |
| { |
| static_assert(Extent == dynamic_extent || Extent == N); |
| } |
| |
| template <size_t N> |
| constexpr Span(const std::array<T, N> &array) noexcept |
| // SAFETY: The type signature guarantees `array` contains `N` elements. |
| : ANGLE_UNSAFE_BUFFERS(Span(array.data(), N)) |
| { |
| static_assert(Extent == dynamic_extent || Extent == N); |
| } |
| |
| // Conversion from a container that provides |T* data()| and |integral_type |
| // size()|. Note that |data()| may not return nullptr for some empty |
| // containers, which can lead to container overflow errors when probing |
| // raw ptrs. |
| template <typename Container, |
| typename = internal::EnableIfSpanCompatibleContainer<Container, T>> |
| constexpr Span(Container &container) |
| // SAFETY: `size()` is the number of elements that can be safely accessed |
| // at `data()`. |
| : ANGLE_UNSAFE_BUFFERS(Span(container.data(), container.size())) |
| {} |
| |
| template <typename Container, |
| typename = internal::EnableIfConstSpanCompatibleContainer<Container, T>> |
| constexpr Span(const Container &container) |
| // SAFETY: `size()` is exactly the number of elements in the initializer |
| // list, so accessing that many will be safe. |
| : ANGLE_UNSAFE_BUFFERS(Span(container.data(), container.size())) |
| {} |
| |
| constexpr Span(const Span &other) noexcept = default; |
| |
| // Conversions from spans of compatible types: this allows a Span<T> to be |
| // seamlessly used as a Span<const T>, but not the other way around. |
| template <typename U, |
| size_t M, |
| typename R, |
| typename = internal::EnableIfLegalSpanConversion<U, T>> |
| constexpr Span(const Span<U, M, R> &other) |
| // SAFETY: `size()` is the number of elements that can be safely accessed |
| // at `data()`. |
| : ANGLE_UNSAFE_BUFFERS(Span(other.data(), other.size())) |
| { |
| static_assert(Extent == dynamic_extent || Extent == M, |
| "Assigning to fixed span from incompatible span"); |
| } |
| |
| Span &operator=(const Span &other) noexcept = default; |
| Span &operator=(Span &&other) noexcept = default; |
| |
| ~Span() noexcept = default; |
| |
| template <typename U, size_t M> |
| bool operator==(const Span<U, M> &other) const |
| { |
| return std::equal(begin(), end(), other.begin(), other.end()); |
| } |
| template <typename U, size_t M> |
| bool operator!=(const Span<U, M> &other) const |
| { |
| return !std::equal(begin(), end(), other.begin(), other.end()); |
| } |
| |
| // [span.sub], span subviews |
| template <size_t Count> |
| constexpr Span<T, Count> first() const |
| { |
| // TODO(tsepez): The following assert isn't yet good enough to replace |
| // the runtime check since we are still allowing unchecked conversions |
| // to arbitrary non-dynamic_extent spans. |
| static_assert(Extent == dynamic_extent || Count <= Extent); |
| CHECK(Count <= size_); |
| // SAFETY: CHECK() on line above. |
| return ANGLE_UNSAFE_BUFFERS(Span<T, Count>(data(), Count)); |
| } |
| constexpr Span<T, dynamic_extent> first(size_t count) const |
| { |
| CHECK(count <= size_); |
| // SAFETY: CHECK() on line above. |
| return ANGLE_UNSAFE_BUFFERS(Span(static_cast<T *>(data_), count)); |
| } |
| |
| template <size_t Count> |
| constexpr Span<T, Count> last() const |
| { |
| // TODO(tsepez): The following assert isn't yet good enough to replace |
| // the runtime check since we are still allowing unchecked conversions |
| // to arbitrary non-dynamic_extent spans. |
| static_assert(Extent == dynamic_extent || Count <= Extent); |
| CHECK(Count <= size_); |
| // SAFETY: CHECK() on line above. |
| return ANGLE_UNSAFE_BUFFERS(Span<T, Count>(data() + (size_ - Count), Count)); |
| } |
| constexpr Span<T, dynamic_extent> last(size_t count) const |
| { |
| CHECK(count <= size_); |
| // SAFETY: CHECK() on line above. |
| return ANGLE_UNSAFE_BUFFERS(Span(static_cast<T *>(data_) + (size_ - count), count)); |
| } |
| |
| template <size_t Offset, size_t Count = dynamic_extent> |
| constexpr Span<T, dynamic_extent> subspan() const |
| { |
| // TODO(tsepez): The following check isn't yet good enough to replace |
| // the runtime check since we are still allowing unchecked conversions |
| // to arbitrary non-dynamic_extent spans. |
| static_assert(Extent == dynamic_extent || Count == dynamic_extent || |
| Offset + Count <= Extent); |
| return subspan(Offset, Count); |
| } |
| constexpr Span<T, dynamic_extent> subspan(size_t pos, size_t count = dynamic_extent) const |
| { |
| CHECK(pos <= size_); |
| CHECK(count == dynamic_extent || count <= size_ - pos); |
| // SAFETY: CHECK()s on lines above. |
| return ANGLE_UNSAFE_BUFFERS( |
| Span(static_cast<T *>(data_) + pos, count == dynamic_extent ? size_ - pos : count)); |
| } |
| |
| // [span.obs], span observers |
| constexpr size_t size() const noexcept { return size_; } |
| constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); } |
| constexpr bool empty() const noexcept { return size_ == 0; } |
| |
| // [span.elem], span element access |
| T &operator[](size_t index) const noexcept |
| { |
| CHECK(index < size_); |
| return ANGLE_UNSAFE_BUFFERS(static_cast<T *>(data_)[index]); |
| } |
| |
| constexpr T &front() const noexcept |
| { |
| CHECK(!empty()); |
| return *data(); |
| } |
| |
| constexpr T &back() const noexcept |
| { |
| CHECK(!empty()); |
| return ANGLE_UNSAFE_BUFFERS(*(data() + size() - 1)); |
| } |
| |
| constexpr T *data() const noexcept { return static_cast<T *>(data_); } |
| |
| // [span.iter], span iterator support |
| constexpr iterator begin() const noexcept { return static_cast<T *>(data_); } |
| constexpr iterator end() const noexcept { return ANGLE_UNSAFE_BUFFERS(begin() + size_); } |
| |
| constexpr const_iterator cbegin() const noexcept { return begin(); } |
| constexpr const_iterator cend() const noexcept { return end(); } |
| |
| constexpr reverse_iterator rbegin() const noexcept { return reverse_iterator(end()); } |
| constexpr reverse_iterator rend() const noexcept { return reverse_iterator(begin()); } |
| |
| constexpr const_reverse_iterator crbegin() const noexcept |
| { |
| return const_reverse_iterator(cend()); |
| } |
| constexpr const_reverse_iterator crend() const noexcept |
| { |
| return const_reverse_iterator(cbegin()); |
| } |
| |
| private: |
| InternalPtr data_ = nullptr; |
| size_t size_ = 0; |
| }; |
| |
| // Deduction guides. |
| template <typename T, size_t N> |
| Span(T (&)[N]) -> Span<T, N>; |
| |
| template <typename T, size_t N> |
| Span(const T (&)[N]) -> Span<const T, N>; |
| |
| template <typename T, size_t N> |
| Span(std::array<T, N> &) -> Span<T, N>; |
| |
| template <typename T, size_t N> |
| Span(const std::array<T, N> &) -> Span<const T, N>; |
| |
| template <typename T> |
| Span(std::vector<T> &) -> Span<T>; |
| |
| template <typename T> |
| Span(const std::vector<T> &) -> Span<const T>; |
| |
| // [span.objectrep], views of object representation |
| template <typename T, size_t N, typename P> |
| Span<const uint8_t> as_bytes(Span<T, N, P> s) noexcept |
| { |
| // SAFETY: from size_bytes() method. |
| return ANGLE_UNSAFE_BUFFERS( |
| Span<const uint8_t>(reinterpret_cast<const uint8_t *>(s.data()), s.size_bytes())); |
| } |
| |
| template <typename T, |
| size_t N, |
| typename P, |
| typename U = typename std::enable_if<!std::is_const<T>::value>::type> |
| Span<uint8_t> as_writable_bytes(Span<T, N, P> s) noexcept |
| { |
| // SAFETY: from size_bytes() method. |
| return ANGLE_UNSAFE_BUFFERS( |
| Span<uint8_t>(reinterpret_cast<uint8_t *>(s.data()), s.size_bytes())); |
| } |
| |
| template <typename T, size_t N, typename P> |
| Span<const char> as_chars(Span<T, N, P> s) noexcept |
| { |
| // SAFETY: from size_bytes() method. |
| return ANGLE_UNSAFE_BUFFERS( |
| Span<const char>(reinterpret_cast<const char *>(s.data()), s.size_bytes())); |
| } |
| |
| template <typename T, |
| size_t N, |
| typename P, |
| typename U = typename std::enable_if<!std::is_const<T>::value>::type> |
| Span<char> as_writable_chars(Span<T, N, P> s) noexcept |
| { |
| // SAFETY: from size_bytes() method. |
| return ANGLE_UNSAFE_BUFFERS(Span<char>(reinterpret_cast<char *>(s.data()), s.size_bytes())); |
| } |
| |
| // `span_from_ref` converts a reference to T into a span of length 1. This is a |
| // non-std helper that is inspired by the `std::slice::from_ref()` function from |
| // Rust. |
| template <typename T> |
| static constexpr Span<T> span_from_ref(T &single_object) noexcept |
| { |
| // SAFETY: single object passed by reference. |
| return ANGLE_UNSAFE_BUFFERS(Span<T>(&single_object, 1u)); |
| } |
| |
| // `byte_span_from_ref` converts a reference to T into a span of uint8_t of |
| // length sizeof(T). This is a non-std helper that is a sugar for |
| // `as_writable_bytes(span_from_ref(x))`. |
| template <typename T> |
| static constexpr Span<const uint8_t> byte_span_from_ref(const T &single_object) noexcept |
| { |
| return as_bytes(span_from_ref(single_object)); |
| } |
| template <typename T> |
| static constexpr Span<uint8_t> byte_span_from_ref(T &single_object) noexcept |
| { |
| return as_writable_bytes(span_from_ref(single_object)); |
| } |
| |
| // Convenience function for converting an object which is itself convertible |
| // to span into a span of bytes (i.e. span of const uint8_t). Typically used |
| // to convert std::string or string-objects holding chars, or std::vector |
| // or vector-like objects holding other scalar types, prior to passing them |
| // into an API that requires byte spans. |
| template <typename T> |
| Span<const uint8_t> as_byte_span(const T &arg) |
| { |
| return as_bytes(Span(arg)); |
| } |
| template <typename T> |
| Span<const uint8_t> as_byte_span(T &&arg) |
| { |
| return as_bytes(Span(arg)); |
| } |
| |
| // Convenience function for converting an object which is itself convertible |
| // to span into a span of mutable bytes (i.e. span of uint8_t). Typically used |
| // to convert std::string or string-objects holding chars, or std::vector |
| // or vector-like objects holding other scalar types, prior to passing them |
| // into an API that requires mutable byte spans. |
| template <typename T> |
| constexpr Span<uint8_t> as_writable_byte_span(T &&arg) |
| { |
| return as_writable_bytes(Span(arg)); |
| } |
| |
| } // namespace angle |
| |
| #endif // COMMON_SPAN_H_ |