[go: up one dir, main page]

bola 0.1.2

A lightweight native rust linear algebra library.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
use rayon::prelude::*;

use crate::{gemm::gemm, utilities::daxpy};

#[cfg(feature = "profiling")]
use crate::profiling;

const TRSM_RECURSION_STOP: usize = 64; // Base case size
const PARALLEL_THRESHOLD: usize = 32;

/// Solves a triangular matrix equation with multiple right-hand sides.
/// - `op(A) * X = alpha * B`  (if `side` = 'L')
/// - `X * op(A) = alpha * B`  (if `side` = 'R')
///
/// Where `X` and `B` are M-by-N matrices, `A` is a triangular matrix, `alpha` is a
/// scalar, and `op(A)` is either `A` or `A^T`. The solution `X` overwrites the
/// input matrix `B` in place.
///
/// # Arguments
/// * `side`   - Specifies if `op(A)` multiplies `X` from the left ('L') or right ('R').
/// * `uplo`   - Specifies if `A` is an upper ('U') or lower ('L') triangular matrix.
/// * `transa` - Specifies the form of `op(A)`: 'N' for `A`, 'T' for `A^T`.
/// * `diag`   - Specifies if `A` is unit triangular ('U') or not ('N').
/// * `m`      - The number of rows of matrix `B`.
/// * `n`      - The number of columns of matrix `B`.
/// * `alpha`  - The scalar multiplier `alpha`. If `alpha` is 0, `B` is set to zero.
/// * `a`      - A raw constant pointer to the first element of matrix `A`.
/// * `lda`    - The leading dimension of `A`.
/// * `b`      - A raw mutable pointer to the first element of matrix `B`. On exit, it is
///   overwritten with the solution matrix `X`.
/// * `ldb`    - The leading dimension of `B`.
#[allow(unsafe_op_in_unsafe_fn, clippy::missing_safety_doc, clippy::too_many_arguments)]
pub unsafe fn trsm(
    side: char,
    uplo: char,
    transa: char,
    diag: char,
    m: usize,
    n: usize,
    alpha: f64,
    a: *const f64,
    lda: usize,
    b: *mut f64,
    ldb: usize,
) {
    #[cfg(feature = "profiling")]
    let _timer = profiling::ScopedTimer::new("TRSM");

    if m == 0 || n == 0 {
        return;
    }

    // Scale B by alpha if necessary.
    if alpha != 1.0 {
        for j in 0..n {
            for i in 0..m {
                *b.add(i + j * ldb) *= alpha;
            }
        }
    }

    let lside = side.eq_ignore_ascii_case(&'L');
    let upper = uplo.eq_ignore_ascii_case(&'U');
    let notrans = transa.eq_ignore_ascii_case(&'N');
    let unit = diag.eq_ignore_ascii_case(&'U');

    // Dispatch to the correct implementation based on the arguments.
    if lside {
        if notrans {
            if upper {
                trsm_lnu(unit, m, n, a, lda, b, ldb);
            } else {
                trsm_lnl(unit, m, n, a, lda, b, ldb);
            }
        } else if upper {
            trsm_ltu(unit, m, n, a, lda, b, ldb);
        } else {
            trsm_ltl(unit, m, n, a, lda, b, ldb);
        }
    } else if notrans {
        if upper {
            trsm_rnu(unit, m, n, a, lda, b, ldb);
        } else {
            trsm_rnl(unit, m, n, a, lda, b, ldb);
        }
    } else if upper {
        trsm_rtu(unit, m, n, a, lda, b, ldb);
    } else {
        trsm_rtl(unit, m, n, a, lda, b, ldb);
    }
}

// Case: SIDE = 'L', TRANS = 'N', UPLO = 'L' (Solve L*X = B)
#[allow(unsafe_op_in_unsafe_fn)]
unsafe fn trsm_lnl(unit: bool, m: usize, n: usize, a: *const f64, lda: usize, b: *mut f64, ldb: usize) {
    if m <= TRSM_RECURSION_STOP {
        let core_logic = |j: usize, a: *const f64, b: *mut f64| {
            let b_col = b.add(j * ldb);
            for k in 0..m {
                let b_kj = *b_col.add(k);
                if b_kj != 0.0 {
                    let b_kj_updated = if !unit { b_kj / *a.add(k + k * lda) } else { b_kj };
                    *b_col.add(k) = b_kj_updated;
                    if m > k + 1 {
                        daxpy(m - k - 1, -b_kj_updated, a.add(k + 1 + k * lda), 1, b_col.add(k + 1), 1);
                    }
                }
            }
        };
        if n > PARALLEL_THRESHOLD {
            let a_addr = a as usize;
            let b_addr = b as usize;
            (0..n).into_par_iter().for_each(|j| {
                let a = a_addr as *const f64;
                let b = b_addr as *mut f64;
                core_logic(j, a, b);
            });
        } else {
            for j in 0..n {
                core_logic(j, a, b);
            }
        }
        return;
    }
    // Recursive step
    let m1 = m / 2;
    let m2 = m - m1;
    trsm_lnl(unit, m1, n, a, lda, b, ldb);
    gemm('N', 'N', m2, n, m1, -1.0, a.add(m1), lda, b, ldb, 1.0, b.add(m1), ldb);
    trsm_lnl(unit, m2, n, a.add(m1 + m1 * lda), lda, b.add(m1), ldb);
}

// Case: SIDE = 'L', TRANS = 'N', UPLO = 'U' (Solve U*X = B)
#[allow(unsafe_op_in_unsafe_fn)]
unsafe fn trsm_lnu(unit: bool, m: usize, n: usize, a: *const f64, lda: usize, b: *mut f64, ldb: usize) {
    if m <= TRSM_RECURSION_STOP {
        let core_logic = |j: usize, a: *const f64, b: *mut f64| {
            let b_col = b.add(j * ldb);
            for k in (0..m).rev() {
                let b_kj = *b_col.add(k);
                if b_kj != 0.0 {
                    let b_kj_updated = if !unit { b_kj / *a.add(k + k * lda) } else { b_kj };
                    *b_col.add(k) = b_kj_updated;
                    if k > 0 {
                        daxpy(k, -b_kj_updated, a.add(k * lda), 1, b_col, 1);
                    }
                }
            }
        };
        if n > PARALLEL_THRESHOLD {
            let a_addr = a as usize;
            let b_addr = b as usize;
            (0..n).into_par_iter().for_each(|j| {
                let a = a_addr as *const f64;
                let b = b_addr as *mut f64;
                core_logic(j, a, b);
            });
        } else {
            for j in 0..n {
                core_logic(j, a, b);
            }
        }
        return;
    }
    let m1 = m / 2;
    let m2 = m - m1;
    trsm_lnu(unit, m2, n, a.add(m1 + m1 * lda), lda, b.add(m1), ldb);
    gemm('N', 'N', m1, n, m2, -1.0, a.add(m1 * lda), lda, b.add(m1), ldb, 1.0, b, ldb);
    trsm_lnu(unit, m1, n, a, lda, b, ldb);
}

// Case: SIDE = 'L', TRANS = 'T', UPLO = 'L' (Solve L**T*X = B)
#[allow(unsafe_op_in_unsafe_fn)]
unsafe fn trsm_ltl(unit: bool, m: usize, n: usize, a: *const f64, lda: usize, b: *mut f64, ldb: usize) {
    if m <= TRSM_RECURSION_STOP {
        let core_logic = |j: usize, a: *const f64, b: *mut f64| {
            let b_col = b.add(j * ldb);
            for i in (0..m).rev() {
                let mut temp = *b_col.add(i);
                for k in (i + 1)..m {
                    temp -= *a.add(k + i * lda) * *b_col.add(k);
                }
                if !unit {
                    temp /= *a.add(i + i * lda);
                }
                *b_col.add(i) = temp;
            }
        };
        if n > PARALLEL_THRESHOLD {
            let a_addr = a as usize;
            let b_addr = b as usize;
            (0..n).into_par_iter().for_each(|j| {
                let a = a_addr as *const f64;
                let b = b_addr as *mut f64;
                core_logic(j, a, b);
            });
        } else {
            for j in 0..n {
                core_logic(j, a, b);
            }
        }
        return;
    }
    let m1 = m / 2;
    let m2 = m - m1;
    trsm_ltl(unit, m2, n, a.add(m1 + m1 * lda), lda, b.add(m1), ldb);
    gemm('T', 'N', m1, n, m2, -1.0, a.add(m1), lda, b.add(m1), ldb, 1.0, b, ldb);
    trsm_ltl(unit, m1, n, a, lda, b, ldb);
}

// Case: SIDE = 'L', TRANS = 'T', UPLO = 'U' (Solve U**T*X = B)
#[allow(unsafe_op_in_unsafe_fn)]
unsafe fn trsm_ltu(unit: bool, m: usize, n: usize, a: *const f64, lda: usize, b: *mut f64, ldb: usize) {
    if m <= TRSM_RECURSION_STOP {
        let core_logic = |j: usize, a: *const f64, b: *mut f64| {
            let b_col = b.add(j * ldb);
            for i in 0..m {
                let mut temp = *b_col.add(i);
                for k in 0..i {
                    temp -= *a.add(k + i * lda) * *b_col.add(k);
                }
                if !unit {
                    temp /= *a.add(i + i * lda);
                }
                *b_col.add(i) = temp;
            }
        };
        if n > PARALLEL_THRESHOLD {
            let a_addr = a as usize;
            let b_addr = b as usize;
            (0..n).into_par_iter().for_each(|j| {
                let a = a_addr as *const f64;
                let b = b_addr as *mut f64;
                core_logic(j, a, b);
            });
        } else {
            for j in 0..n {
                core_logic(j, a, b);
            }
        }
        return;
    }
    let m1 = m / 2;
    let m2 = m - m1;
    trsm_ltu(unit, m1, n, a, lda, b, ldb);
    gemm('T', 'N', m2, n, m1, -1.0, a.add(m1 * lda), lda, b, ldb, 1.0, b.add(m1), ldb);
    trsm_ltu(unit, m2, n, a.add(m1 + m1 * lda), lda, b.add(m1), ldb);
}

// Case: SIDE = 'R', TRANS = 'N', UPLO = 'L' (Solve X*L = B)
#[allow(unsafe_op_in_unsafe_fn)]
unsafe fn trsm_rnl(unit: bool, m: usize, n: usize, a: *const f64, lda: usize, b: *mut f64, ldb: usize) {
    if n <= TRSM_RECURSION_STOP {
        for j in (0..n).rev() {
            let b_col_j = b.add(j * ldb);
            
            for k in (j + 1)..n {
                let a_kj = *a.add(k + j * lda);
                if a_kj != 0.0 {
                    let b_col_k = b.add(k * ldb); // This is X_k
                    for i in 0..m {
                        *b_col_j.add(i) -= a_kj * *b_col_k.add(i);
                    }
                }
            }
            
            if !unit {
                let a_jj_inv = 1.0 / *a.add(j + j * lda);
                for i in 0..m {
                    *b_col_j.add(i) *= a_jj_inv;
                }
            }
        }
        return;
    }
    let n1 = n / 2; let n2 = n - n1;
    trsm_rnl(unit, m, n2, a.add(n1 + n1 * lda), lda, b.add(n1 * ldb), ldb);
    gemm('N', 'N', m, n1, n2, -1.0, b.add(n1 * ldb), ldb, a.add(n1), lda, 1.0, b, ldb);
    trsm_rnl(unit, m, n1, a, lda, b, ldb);
}

// Case: SIDE = 'R', TRANS = 'N', UPLO = 'U' (Solve X*U = B)
#[allow(unsafe_op_in_unsafe_fn)]
unsafe fn trsm_rnu(unit: bool, m: usize, n: usize, a: *const f64, lda: usize, b: *mut f64, ldb: usize) {
    if n <= TRSM_RECURSION_STOP {
        for j in 0..n {
            let b_col_j = b.add(j * ldb);

            for k in 0..j {
                let a_kj = *a.add(k + j * lda);
                if a_kj != 0.0 {
                    let b_col_k = b.add(k * ldb); // This is X_k
                    for i in 0..m {
                        *b_col_j.add(i) -= a_kj * *b_col_k.add(i);
                    }
                }
            }
            
            if !unit {
                let a_jj_inv = 1.0 / *a.add(j + j * lda);
                for i in 0..m {
                    *b_col_j.add(i) *= a_jj_inv;
                }
            }
        }
        return;
    }
    let n1 = n / 2; let n2 = n - n1;
    trsm_rnu(unit, m, n1, a, lda, b, ldb);
    gemm('N', 'N', m, n2, n1, -1.0, b, ldb, a.add(n1 * lda), lda, 1.0, b.add(n1 * ldb), ldb);
    trsm_rnu(unit, m, n2, a.add(n1 + n1 * lda), lda, b.add(n1 * ldb), ldb);
}

// Case: SIDE = 'R', TRANS = 'T', UPLO = 'L' (Solve X*L**T = B)
#[allow(unsafe_op_in_unsafe_fn)]
unsafe fn trsm_rtl(unit: bool, m: usize, n: usize, a: *const f64, lda: usize, b: *mut f64, ldb: usize) {
    if n <= TRSM_RECURSION_STOP {
        for j in 0..n {
            let b_col_j = b.add(j * ldb);

            for k in 0..j {
                let a_jk = *a.add(j + k * lda);
                if a_jk != 0.0 {
                    let b_col_k = b.add(k * ldb); // This is X_k
                    for i in 0..m {
                        *b_col_j.add(i) -= a_jk * *b_col_k.add(i);
                    }
                }
            }

            if !unit {
                let a_jj_inv = 1.0 / *a.add(j + j * lda);
                for i in 0..m {
                    *b_col_j.add(i) *= a_jj_inv;
                }
            }
        }
        return;
    }
    let n1 = n / 2; let n2 = n - n1;
    trsm_rtl(unit, m, n1, a, lda, b, ldb);
    gemm('N', 'T', m, n2, n1, -1.0, b, ldb, a.add(n1), lda, 1.0, b.add(n1 * ldb), ldb);
    trsm_rtl(unit, m, n2, a.add(n1 + n1 * lda), lda, b.add(n1 * ldb), ldb);
}

// Case: SIDE = 'R', TRANS = 'T', UPLO = 'U' (Solve X*U**T = B)
#[allow(unsafe_op_in_unsafe_fn)]
unsafe fn trsm_rtu(unit: bool, m: usize, n: usize, a: *const f64, lda: usize, b: *mut f64, ldb: usize) {
    if n <= TRSM_RECURSION_STOP {
        for j in (0..n).rev() {
            let b_col_j = b.add(j * ldb);
            
            for k in (j + 1)..n {
                let a_jk = *a.add(j + k * lda);
                if a_jk != 0.0 {
                    let b_col_k = b.add(k * ldb); // This is X_k
                    for i in 0..m {
                        *b_col_j.add(i) -= a_jk * *b_col_k.add(i);
                    }
                }
            }
            
            if !unit {
                let a_jj_inv = 1.0 / *a.add(j + j * lda);
                for i in 0..m {
                    *b_col_j.add(i) *= a_jj_inv;
                }
            }
        }
        return;
    }
    let n1 = n / 2; let n2 = n - n1;
    trsm_rtu(unit, m, n2, a.add(n1 + n1 * lda), lda, b.add(n1 * ldb), ldb);
    gemm('N', 'T', m, n1, n2, -1.0, b.add(n1*ldb), ldb, a.add(n1*lda), lda, 1.0, b, ldb);
    trsm_rtu(unit, m, n1, a, lda, b, ldb);
}

#[cfg(test)]
mod tests {
    use crate::utilities::assert_approx_eq;

    use super::*;

    #[test]
    fn test_trsm_left_lower_no_transpose() {
        let m = 3;
        let n = 2;
        let lda = 3;
        let ldb = 3;
        let a = vec![2.0, 4.0, 6.0, 0.0, 1.0, 5.0, 0.0, 0.0, 3.0];
        let x_expected = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];
        let mut b = vec![2.0, 6.0, 25.0, 8.0, 21.0, 67.0];
        unsafe {
            trsm('L', 'L', 'N', 'N', m, n, 1.0, a.as_ptr(), lda, b.as_mut_ptr(), ldb);
        }
        assert_approx_eq(&b, &x_expected, 1e-9);
    }

    #[test]
    fn test_trsm_right_upper_transpose() {
        let m = 2;
        let n = 3;
        let lda = 3;
        let ldb = 2;
        let a = vec![2.0, 0.0, 0.0, 4.0, 1.0, 0.0, 6.0, 5.0, 3.0]; // UPPER
        let x_expected = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];
        // Correct B for X * A^T, where A is UPPER
        let mut b = vec![44.0, 56.0, 28.0, 34.0, 15.0, 18.0];
        unsafe {
            trsm('R', 'U', 'T', 'N', m, n, 1.0, a.as_ptr(), lda, b.as_mut_ptr(), ldb);
        }
        assert_approx_eq(&b, &x_expected, 1e-9);
    }

    #[test]
    fn test_trsm_right_lower_transpose() {
        let m = 2;
        let n = 3;
        let lda = 3;
        let ldb = 2;
        let a = vec![2.0, 4.0, 6.0, 0.0, 1.0, 5.0, 0.0, 0.0, 3.0]; // LOWER
        let x_expected = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];
        // Correct B for X * A^T, where A is LOWER
        let mut b = vec![2.0, 4.0, 7.0, 12.0, 36.0, 50.0];
        unsafe {
            trsm('R', 'L', 'T', 'N', m, n, 1.0, a.as_ptr(), lda, b.as_mut_ptr(), ldb);
        }
        assert_approx_eq(&b, &x_expected, 1e-9);
    }
}