1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Primitive traits representing basic 'kinds' of types
//!
//! Rust types can be classified in various useful ways according to
//! intrinsic properties of the type. These classifications, often called
//! 'kinds', are represented as traits.
//!
//! They cannot be implemented by user code, but are instead implemented
//! by the compiler automatically for the types to which they apply.
/// Types able to be transferred across task boundaries.
pub unsafe
/// Types with a constant size known at compile-time.
/// Types that can be copied by simply copying bits (i.e. `memcpy`).
/// Types that can be safely shared between tasks when aliased.
///
/// The precise definition is: a type `T` is `Sync` if `&T` is
/// thread-safe. In other words, there is no possibility of data races
/// when passing `&T` references between tasks.
///
/// As one would expect, primitive types like `u8` and `f64` are all
/// `Sync`, and so are simple aggregate types containing them (like
/// tuples, structs and enums). More instances of basic `Sync` types
/// include "immutable" types like `&T` and those with simple
/// inherited mutability, such as `Box<T>`, `Vec<T>` and most other
/// collection types. (Generic parameters need to be `Sync` for their
/// container to be `Sync`.)
///
/// A somewhat surprising consequence of the definition is `&mut T` is
/// `Sync` (if `T` is `Sync`) even though it seems that it might
/// provide unsynchronised mutation. The trick is a mutable reference
/// stored in an aliasable reference (that is, `& &mut T`) becomes
/// read-only, as if it were a `& &T`, hence there is no risk of a data
/// race.
///
/// Types that are not `Sync` are those that have "interior
/// mutability" in a non-thread-safe way, such as `Cell` and `RefCell`
/// in `std::cell`. These types allow for mutation of their contents
/// even when in an immutable, aliasable slot, e.g. the contents of
/// `&Cell<T>` can be `.set`, and do not ensure data races are
/// impossible, hence they cannot be `Sync`. A higher level example
/// of a non-`Sync` type is the reference counted pointer
/// `std::rc::Rc`, because any reference `&Rc<T>` can clone a new
/// reference, which modifies the reference counts in a non-atomic
/// way.
///
/// For cases when one does need thread-safe interior mutability,
/// types like the atomics in `std::sync` and `Mutex` & `RWLock` in
/// the `sync` crate do ensure that any mutation cannot cause data
/// races. Hence these types are `Sync`.
///
/// Users writing their own types with interior mutability (or anything
/// else that is not thread-safe) should use the `NoSync` marker type
/// (from `std::kinds::marker`) to ensure that the compiler doesn't
/// consider the user-defined type to be `Sync`. Any types with
/// interior mutability must also use the `std::cell::UnsafeCell` wrapper
/// around the value(s) which can be mutated when behind a `&`
/// reference; not doing this is undefined behaviour (for example,
/// `transmute`-ing from `&T` to `&mut T` is illegal).
pub unsafe
/// Marker types are special types that are used with unsafe code to
/// inform the compiler of special constraints. Marker types should
/// only be needed when you are creating an abstraction that is
/// implemented using unsafe code. In that case, you may want to embed
/// some of the marker types below into your type.