Llopis-Lorente et al., 2020 - Google Patents
In silico classifiers for the assessment of drug proarrhythmicityLlopis-Lorente et al., 2020
View PDF- Document ID
- 4235573055607738111
- Author
- Llopis-Lorente J
- Gomis-Tena J
- Cano J
- Romero L
- Saiz J
- Trenor B
- Publication year
- Publication venue
- Journal of Chemical Information and Modeling
External Links
Snippet
Drug-induced torsade de pointes (TdP) is a life-threatening ventricular arrhythmia responsible for the withdrawal of many drugs from the market. Although currently used TdP risk-assessment methods are effective, they are expensive and prone to produce false …
- 229940079593 drugs 0 title abstract description 406
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/345—Medical expert systems, neural networks or other automated diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/3437—Medical simulation or modelling, e.g. simulating the evolution of medical disorders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/502—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/12—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for modelling or simulation in systems biology, e.g. probabilistic or dynamic models, gene-regulatory networks, protein interaction networks or metabolic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/18—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for functional genomics or proteomics, e.g. genotype-phenotype associations, linkage disequilibrium, population genetics, binding site identification, mutagenesis, genotyping or genome annotation, protein-protein interactions or protein-nucleic acid interactions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/36—Computer-assisted acquisition of medical data, e.g. computerised clinical trials or questionnaires
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/706—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for drug design with the emphasis on a therapeutic agent, e.g. ligand-biological target interactions, pharmacophore generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/24—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/702—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for analysis and planning of chemical reactions and syntheses, e.g. synthesis design, reaction prediction, mechanism elucidation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Llopis-Lorente et al. | In silico classifiers for the assessment of drug proarrhythmicity | |
| Lancaster et al. | Improved prediction of drug‐induced Torsades de Pointes through simulations of dynamics and machine learning algorithms | |
| Whittaker et al. | Calibration of ionic and cellular cardiac electrophysiology models | |
| Romero et al. | In silico QT and APD prolongation assay for early screening of drug-induced proarrhythmic risk | |
| Georgi et al. | Binding kinetics survey of the drugged kinome | |
| Gintant et al. | Evolution of strategies to improve preclinical cardiac safety testing | |
| Elkins et al. | Variability in high-throughput ion-channel screening data and consequences for cardiac safety assessment | |
| Sahli-Costabal et al. | Classifying drugs by their arrhythmogenic risk using machine learning | |
| Britton et al. | Quantitative comparison of effects of dofetilide, sotalol, quinidine, and verapamil between human ex vivo trabeculae and in silico ventricular models incorporating inter-individual action potential variability | |
| JP2008530660A (en) | How to define a virtual patient population | |
| US12411128B2 (en) | Methods and apparatuses for prediction of mechanism of activity of compounds | |
| Lu et al. | Assessing drug-induced long QT and proarrhythmic risk using human stem-cell-derived cardiomyocytes in a Ca2+ imaging assay: evaluation of 28 CiPA compounds at three test sites | |
| Zhang et al. | Development of novel in silico prediction model for drug-induced ototoxicity by using naïve Bayes classifier approach | |
| Garcia de Lomana et al. | Predicting the mitochondrial toxicity of small molecules: insights from mechanistic assays and cell painting data | |
| JP2019527894A (en) | Dasatinib reaction prediction model and method | |
| Okada et al. | Arrhythmic hazard map for a 3D whole‐ventricle model under multiple ion channel block | |
| Di Filippo et al. | A machine learning model to predict drug transfer across the human placenta barrier | |
| Morita et al. | Investigation of a data split strategy involving the time axis in adverse event prediction using machine learning | |
| Tcheremenskaia et al. | In silico approaches for prediction of genotoxic and carcinogenic potential of cosmetic ingredients | |
| Mughal et al. | Random forest model prediction of compound oral exposure in the mouse | |
| Jia et al. | Exploring the cuproptosis-related molecular clusters in the peripheral blood of patients with amyotrophic lateral sclerosis | |
| Trovato et al. | Cross clinical-experimental-computational qualification of in silico drug trials on human cardiac purkinje cells for proarrhythmia risk prediction | |
| Mirams | Computational cardiac safety testing | |
| Nascimben | Machine learning approaches for personalized medicine | |
| Cavero | Exploratory safety pharmacology: a new safety paradigm to de-risk drug candidates prior to selection for regulatory science investigations |