Wang et al., 2017 - Google Patents
Deister: A light-weight autonomous block management in data-intensive file systems using deterministic declustering distributionWang et al., 2017
View PDF- Document ID
- 4434295850894934645
- Author
- Wang J
- Zhang X
- Zhang J
- Yin J
- Han D
- Wang R
- Huang D
- Publication year
- Publication venue
- Journal of Parallel and Distributed Computing
External Links
Snippet
During the last few decades, Data-intensive File Systems (DiFS), such as Google File System (GFS) and Hadoop Distributed File System (HDFS) have become the key storage architectures for big data processing. These storage systems usually divide files into fixed …
- 238000011030 bottleneck 0 abstract description 4
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30067—File systems; File servers
- G06F17/30182—File system types
- G06F17/30194—Distributed file systems
- G06F17/30212—Distributed file systems implemented as replicated file system
- G06F17/30215—Details of management specifically adapted to replicated file systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/20—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
- G06F11/202—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant
- G06F11/2023—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant details of failing over
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/20—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
- G06F11/2097—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements maintaining the standby controller/processing unit updated
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30312—Storage and indexing structures; Management thereof
- G06F17/30321—Indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30067—File systems; File servers
- G06F17/30129—Details of further file system functionalities
- G06F17/3015—Redundancy elimination performed by the file system
- G06F17/30156—De-duplication implemented within the file system, e.g. based on file segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30575—Replication, distribution or synchronisation of data between databases or within a distributed database; Distributed database system architectures therefor
- G06F17/30584—Details of data partitioning, e.g. horizontal or vertical partitioning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30067—File systems; File servers
- G06F17/30129—Details of further file system functionalities
- G06F17/30144—Details of monitoring file system events, e.g. by the use of hooks, filter drivers, logs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/20—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
- G06F11/2053—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where persistent mass storage functionality or persistent mass storage control functionality is redundant
- G06F11/2056—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where persistent mass storage functionality or persistent mass storage control functionality is redundant by mirroring
- G06F11/2071—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where persistent mass storage functionality or persistent mass storage control functionality is redundant by mirroring using a plurality of controllers
- G06F11/2076—Details of synchronous techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30289—Database design, administration or maintenance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
- G06F11/14—Error detection or correction of the data by redundancy in operation
- G06F11/1402—Saving, restoring, recovering or retrying
- G06F11/1446—Point-in-time backing up or restoration of persistent data
- G06F11/1458—Management of the backup or restore process
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30943—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
- G06F17/30946—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7992037B2 (en) | Scalable secondary storage systems and methods | |
| Vorapongkitipun et al. | Improving performance of small-file accessing in Hadoop | |
| Azzedin | Towards a scalable HDFS architecture | |
| Xu et al. | Efficient and scalable metadata management in EB-scale file systems | |
| Merceedi et al. | A comprehensive survey for hadoop distributed file system | |
| Dhulavvagol et al. | Performance enhancement of distributed system using HDFS federation and sharding | |
| Pacheco et al. | GlobalFS: A strongly consistent multi-site file system | |
| Wang et al. | Deister: A light-weight autonomous block management in data-intensive file systems using deterministic declustering distribution | |
| Lillaney et al. | Agni: An efficient dual-access file system over object storage | |
| US9037762B2 (en) | Balancing data distribution in a fault-tolerant storage system based on the movements of the replicated copies of data | |
| Saloustros et al. | Rethinking HBase: design and implementation of an elastic key-value store over log-structured local volumes | |
| Vaidya et al. | Critical study of performance parameters on distributed file systems using MapReduce | |
| Beineke et al. | High throughput log-based replication for many small in-memory objects | |
| Prasad et al. | Improving the performance of processing for small files in Hadoop: A case study of weather data analytics | |
| Klein et al. | Dxram: A persistent in-memory storage for billions of small objects | |
| Beineke et al. | Fast parallel recovery of many small in-memory objects | |
| Poonthottam et al. | A dynamic data placement scheme for hadoop using real-time access patterns | |
| Rao et al. | Hotrod: Managing grid storage with on-demand replication | |
| Li et al. | An Optimized Storage Method for Small Files in Ceph System | |
| Shevarev et al. | Dynamic Content-Oriented Indexing and Replication for High-Performance Storage and Analysis of Big Data in the IPFS Network | |
| Wang et al. | Transactional multi-row access guarantee in the key-value store | |
| Pragna | High performance fault-tolerant hadoop distributed file system | |
| Johnson et al. | Big data processing using Hadoop MapReduce programming model | |
| Kumar et al. | BFC: High performance distributed big file cloud storage based on key value store | |
| Wang et al. | G-SD: Achieving Fast Reverse Lookup using Scalable Declustering Layout in Large-Scale File Systems |