Koch et al., 1992 - Google Patents
Photonic integrated circuitsKoch et al., 1992
- Document ID
- 4485031148823554306
- Author
- Koch T
- Koren U
- Publication year
- Publication venue
- AT&T Technical Journal
External Links
Snippet
A semiconductor laser contains a light‐amplifying gain medium and a miniature waveguide that confines the light to the laser cavity. With today's laser‐fabrication technology, one can integrate lasers with other active optical elements—such as detectors, optical amplifiers …
- 230000003287 optical 0 abstract description 37
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
- G02B6/1221—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths made from organic materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back lasers (DFB-lasers)
- H01S5/125—Distributed Bragg reflector lasers (DBR-lasers)
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
- H01S5/146—External cavity lasers using a fiber as external cavity
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1028—Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting lasers (SE-lasers)
- H01S5/183—Surface-emitting lasers (SE-lasers) having a vertical cavity (VCSE-lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06256—Controlling the frequency of the radiation with DBR-structure
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/50—Amplifier structures not provided for in groups H01S5/02 - H01S5/30
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S2301/00—Functional characteristics
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Jones et al. | Heterogeneously integrated InP\/silicon photonics: fabricating fully functional transceivers | |
| Koch et al. | Semiconductor photonic integrated circuits | |
| US9246596B2 (en) | Monolithic widely-tunable coherent receiver | |
| Heck et al. | Hybrid silicon photonic integrated circuit technology | |
| Coldren et al. | High performance InP-based photonic ICs—A tutorial | |
| US9020002B2 (en) | Hybrid silicon laser-quantum well intermixing wafer bonded integration platform for advanced photonic circuits with electroabsorption modulators | |
| US9020001B2 (en) | Tunable laser using III-V gain materials | |
| US11784463B2 (en) | Silicon photonics based tunable laser | |
| US8098969B2 (en) | Waveguide optically pre-amplified detector with passband wavelength filtering | |
| US6282345B1 (en) | Device for coupling waveguides to one another | |
| Guzzon et al. | Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss | |
| CN102713703A (en) | Waveguide optically pre-amplified detector with passband wavelength filtering | |
| Coldren et al. | A review of photonic systems-on-chip enabled by widely tunable lasers | |
| Raring et al. | 40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters | |
| Koch et al. | Photonic integrated circuits | |
| Bernasconi et al. | Monolithically integrated 40-Gb/s switchable wavelength converter | |
| Kaiser et al. | Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications | |
| Pommarede et al. | Transmission OVER 50km at 10Gbs/s with a hybrid III-V on silicon integrated tunable laser and electro-absorption modulator | |
| Ougazzaden et al. | 40 Gb/s tandem electro-absorption modulator | |
| Koch et al. | InP-based photonic integrated circuits | |
| Fulbert et al. | Photonics—Electronics integration on CMOS | |
| Matz et al. | Development of a photonic integrated transceiver chip for WDM transmission | |
| JP3311238B2 (en) | Optical semiconductor device and method of manufacturing the same | |
| Klamkin et al. | High efficiency widely tunable SGDBR lasers for improved direct modulation performance | |
| Kurczveil et al. | Innovative DWDM silicon photonics for high-performance computing |