Yoshimoto et al., 2013 - Google Patents
DSP-based optical access approaches for enhancing NG-PON2 systemsYoshimoto et al., 2013
- Document ID
- 4661169138143859654
- Author
- Yoshimoto N
- Kani J
- Kim S
- Iiyama N
- Terada J
- Publication year
- Publication venue
- IEEE Communications Magazine
External Links
Snippet
Motivated by recent progress in next-generation PON2, or NG-PON2, standardization, this article reviews digital signal processing technologies to further enhance NG-PON2 systems by realizing flexible and cost-effective optical access network deployments. First, flexible …
- 230000003287 optical 0 title abstract description 84
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2557—Cross-phase modulation [XPM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0241—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
- H04J14/0242—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
- H04J14/0245—Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
- H04J14/0247—Sharing one wavelength for at least a group of ONUs
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2575—Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
- H04B10/25752—Optical arrangements for wireless networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0256—Optical medium access at the optical channel layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0228—Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
- H04J14/023—Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0278—WDM optical network architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Yoshimoto et al. | DSP-based optical access approaches for enhancing NG-PON2 systems | |
| Cvijetic et al. | Terabit optical access networks based on WDM-OFDMA-PON | |
| Chow et al. | Studies of OFDM signal for broadband optical access networks | |
| CN102833206B (en) | Polarization multiplexing band interpolation based OFDMA-PON (orthogonal frequency division multiple access-passive optical network) system | |
| Dong et al. | Bidirectional hybrid OFDM-WDM-PON system for 40-Gb/s downlink and 10-Gb/s uplink transmission using RSOA remodulation | |
| CN102237977A (en) | Polarized interweaving OFDM (Orthogonal Frequency Division Multiplexing)/SCFDM (Singe Carrier Frequency Division Multiplexing) passive optical network system | |
| Choudhury et al. | Symmetric 10 Gb/s wavelength reused bidirectional RSOA based WDM-PON with DPSK modulated downstream and OFDM modulated upstream signals | |
| Kaur et al. | Design and performance analysis of bidirectional TWDM-PON employing QAM-OFDM for downstream and re-modulation for upstream | |
| Zhang et al. | Optical-and electrical-domain compensation techniques for next-generation passive optical networks | |
| Iannone et al. | Increasing TDM rates for access systems beyond NG-PON2 | |
| CN104796376A (en) | Passive optical network downlink transmission system based on multi-carrier modulation of filter bank | |
| Altabas et al. | Passive optical networks: Introduction | |
| Gonem et al. | Experimental demonstration of soft-ROADMS with dual-arm drop elements for future optical-wireless converged access networks | |
| Qiu et al. | OFDM-PON optical fiber access technologies | |
| Coura et al. | A bandwidth scalable OFDM passive optical network for future access network | |
| Shieh | OFDM for adaptive ultra high-speed optical networks | |
| Nowshin et al. | ‘Demonstration and performance analysis of ROF based OFDM-PON system for next generation faber optic communication | |
| CN104935384B (en) | OQAM‑OFDM wavelength stacking PON downlink transmission system based on subcarrier modulation | |
| Zhou et al. | A novel multi-band OFDMA-PON architecture using signal-to-signal beat interference cancellation receivers based on balanced detection | |
| Xue | Key Signal Processing Technologies for High-speed Passive Optical Networks | |
| Zhang et al. | Bidirectional 50 Gb/s/λ WDM-PON based on optical intensity modulation and direct detection | |
| Dong | Digital filter multiplexing-enabled advanced networking devices and PON architectures for 5G network convergence | |
| Vijarnstit et al. | A flexible fiber access network using superchannel coherent optical orthogonal frequency division multiplexing | |
| Abrate et al. | Review and comparative assessment of FDMA-PON vs. TDMA-PON for next-generation optical access networks | |
| Deng et al. | OFDMA-based LAN emulation in long-reach hybrid PON system |