Vallett, 2002 - Google Patents
Scanning SQUID Microscopy for die level fault isolationVallett, 2002
View PDF- Document ID
- 4939203807796574230
- Author
- Vallett D
- Publication year
- Publication venue
- International Symposium for Testing and Failure Analysis
External Links
Snippet
This paper presents detailed results of scanning SQUID microscopy (SSM) analyses performed on the frontside and backside of both loose and packaged die. Optical and SEM images of localized defects are shown. Comparisons with alternative physical fault isolation …
- 241000238366 Cephalopoda 0 title abstract description 15
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/302—Contactless testing
- G01R31/308—Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
- G01R31/311—Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3183—Generation of test inputs, e.g. test vectors, patterns or sequence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/302—Contactless testing
- G01R31/305—Contactless testing using electron beams
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2853—Electrical testing of internal connections or -isolation, e.g. latch-up or chip-to-lead connections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2886—Features relating to contacting the IC under test, e.g. probe heads; chucks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/282—Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2648—Characterising semiconductor materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/30—Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
- H01L22/34—Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Wolfgang | Electron beam testing | |
| Knauss et al. | Scanning SQUID microscopy for current imaging | |
| Aaron Falk | Advanced LIVA/TIVA Techniques | |
| Vallett | Scanning SQUID Microscopy for die level fault isolation | |
| Jacobs et al. | Optical beam-based defect localization methodologies for open and short failures in micrometer-scale 3-D TSV interconnects | |
| Kehayias et al. | High-resolution short-circuit fault localization in a multilayer integrated circuit using a quantum diamond microscope | |
| Oliver et al. | Vector magnetic current imaging of an 8 nm process node chip and 3D current distributions using the quantum diamond microscope | |
| Vallett | A comparison of lock-in thermography and magnetic current imaging for localizing buried short-circuits | |
| US6872581B2 (en) | Measuring back-side voltage of an integrated circuit | |
| Orozco | Magnetic field imaging for electrical fault isolation | |
| Gaudestad et al. | High resolution magnetic current imaging for die level short localization | |
| NIKAWA | Laser-SQUID microscopy as a novel tool for inspection, monitoring and analysis of LSI-chip-defects: Nondestructive and non-electrical-contact technique | |
| Knauss et al. | Detecting power shorts from front and backside of IC packages using scanning SQUID microscopy | |
| Schlangen et al. | Functional IC analysis through chip backside with nano scale resolution—E-beam probing in FIB trenches to STI level | |
| US12431327B2 (en) | Stroboscopic electron-beam signal image mapping | |
| Vallett | Magnetic current imaging revisited | |
| Bockelman et al. | Infrared emission-based static logic state imaging on advanced silicon technologies | |
| Gaudestad et al. | Space domain reflectometry for opens detection in stacked-die packages | |
| Johnson et al. | Zero channel bias determination of device turn-on and the Seebeck effect in nanoprobing | |
| Orozco | Magnetic current imaging in failure analysis | |
| Vanderlinde et al. | Localizing power to ground shorts in a chips-first MCM by scanning SQUID microscopy | |
| Vallett et al. | Localization of dead open in a solder bump by space domain reflectometry | |
| Orozco et al. | 3D Fault Isolation in 2.5 D Device Comprising High Bandwidth Memory Stacks and Processor Unit Using 3D Magnetic Field Imaging | |
| Schrag et al. | Quantitative analysis and depth measurement via magnetic field imaging | |
| Christiansen et al. | Board-level and Packaged Device Failure Analysis Using Electromagnetic Antenna/Injection Power Spectrum Analysis (EMAPSA/EMIPSA) |