[go: up one dir, main page]

Huang et al., 2021 - Google Patents

RETRACTED: Gradients of a Sandwich-structured Immunosensor Controlled Using Magnetized Masks for Determination of Human Serum Albumin Using …

Huang et al., 2021

View PDF
Document ID
4967119162858210791
Author
Huang C
Chang C
Huang B
Lu C
et al.
Publication year

External Links

Snippet

Background: Separation of macromolecules or particles from a colloid system to from gradient structure on the surface has been employed for biosensing systems, suggesting an enhancement of the chemical and physical features of particles. Performance of an …
Continue reading at scholar.archive.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay
    • G01N33/543Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay
    • G01N33/543Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay
    • G01N33/543Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay
    • G01N33/543Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANO-TECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
    • B82Y15/00Nano-technology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANO-TECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
    • B82Y30/00Nano-technology for materials or surface science, e.g. nano-composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANO-TECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANO-STRUCTURES; MEASUREMENT OR ANALYSIS OF NANO-STRUCTURES; MANUFACTURE OR TREATMENT OF NANO-STRUCTURES
    • B82Y10/00Nano-technology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Similar Documents

Publication Publication Date Title
Hu et al. Aptamer-based novel Ag-coated magnetic recognition and SERS nanotags with interior nanogap biosensor for ultrasensitive detection of protein biomarker
Ehsani et al. Comparison of CuO nanoparticle and CuO/MWCNT nanocomposite for amplification of chemiluminescence immunoassay for detection of the hepatitis B surface antigen in biological samples
Swierczewska et al. High-sensitivity nanosensors for biomarker detection
EP2545367B1 (en) Magnetic sensor based quantitative binding kinetics analysis
Millen et al. Giant magnetoresistive sensors and superparamagnetic nanoparticles: a chip-scale detection strategy for immunosorbent assays
Liao et al. Controlled antibody orientation on Fe3O4 nanoparticles and CdTe quantum dots enhanced sensitivity of a sandwich-structured electrogenerated chemiluminescence immunosensor for the determination of human serum albumin
Ko et al. SERS-based immunoassay of tumor marker VEGF using DNA aptamers and silica-encapsulated hollow gold nanospheres
Feng et al. A magnetic SERS immunosensor for highly sensitive and selective detection of human carboxylesterase 1 in human serum samples
US20080206104A1 (en) Accurate Magnetic Biosensor
WO2016187588A1 (en) Plasmonic nanoparticles and lspr-based assays
Orlov et al. A new real-time method for investigation of affinity properties and binding kinetics of magnetic nanoparticles
Liu et al. Nanovehicles based bioassay labels
Huang et al. Performance enhancement of electrochemiluminescence with the immunosensor controlled using magnetized masks for the determination of epithelial cancer biomarker EpCAM
Zhao et al. Magnetic nanoprobe-enabled lateral flow assays: recent advances
JP6593840B2 (en) Quantum dot fluorescence enhanced immunoassay
Filik et al. A review on colorimetric sensing of tumor markers based on enzyme-mimicking nanomaterials
Campanile et al. Multifunctional Core@ Satellite Magnetic Particles for Magnetoresistive Biosensors
CN110702754B (en) A kind of method for measuring human chorionic gonadotropin
Yin et al. Highly sensitive “off-on” sensor based on MXene and magnetic microspheres for simultaneous detection of lung cancer biomarkers-Neuron specific enolase and carcinoembryonic antigen
Mohtasham et al. Magnetic N-doped carbon derived from mixed ligands MOF as effective electrochemiluminescence coreactor for performance enhancement of SARS-CoV-2 immunosensor
Song et al. Nanoimprinted thrombin aptasensor with picomolar sensitivity based on plasmon excited quantum dots
Lin et al. Coordination-induced self-assembly based carbon dot dendrimers as efficient signal labels for electrochemiluminescent immunosensor construction
Huang et al. RETRACTED: Gradients of a Sandwich-structured Immunosensor Controlled Using Magnetized Masks for Determination of Human Serum Albumin Using Electrochemiluminescence
Ju et al. Nanomaterials for immunosensors and immunoassays
Yang et al. An early cancer diagnosis platform based on micro-magnetic sensor array demonstrates ultra-high sensitivity