[go: up one dir, main page]

Nishimura et al., 2002 - Google Patents

A redundancy test-time reduction technique in 1-Mbit DRAM with a multibit test mode

Nishimura et al., 2002

Document ID
5190349703903000064
Author
Nishimura Y
Hamada M
Hidaka H
Ozaki H
Fujishima K
Publication year
Publication venue
IEEE journal of solid-state circuits

External Links

Snippet

To realize an efficient redundancy test using the multibit test (MBT) mode, a redundancy flag on a memory LSI tester and an effective redundancy technique which cooperates with the MBT mode have been introduced. This simple redundancy architecture needs only the …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • G11C29/26Accessing multiple arrays
    • G11C2029/2602Concurrent test
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/44Indication or identification of errors, e.g. for repair
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/38Response verification devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/14Implementation of control logic, e.g. test mode decoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C2029/5006Current
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/72Masking faults in memories by using spares or by reconfiguring with optimized replacement algorithms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/006Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation at wafer scale level, i.e. WSI
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output (I/O) data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1006Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor

Similar Documents

Publication Publication Date Title
US6070256A (en) Method and apparatus for self-testing multi-port RAMs
Suk et al. A march test for functional faults in semiconductor random access memories
KR100559022B1 (en) Methods and Circuits for Test and Repair
Su et al. An integrated ECC and redundancy repair scheme for memory reliability enhancement
Lee et al. A memory built-in self-repair scheme based on configurable spares
US20030204795A1 (en) Testing of ECC memories
Bergfeld et al. Diagnostic testing of embedded memories using BIST
Sachdev Open defects in CMOS RAM address decoders
US5954831A (en) Method for testing a memory device
US6009026A (en) Compressed input/output test mode
Otterstedt et al. Detection of CMOS address decoder open faults with March and pseudo random memory tests
Schanstra et al. Industrial evaluation of stress combinations for march tests applied to SRAMs
Barth et al. Embedded DRAM design and architecture for the IBM 0.11-µm ASIC offering
Wu et al. Built-in self-test for multi-port RAMs
Nishimura et al. A redundancy test-time reduction technique in 1-Mbit DRAM with a multibit test mode
deJong et al. Memory interconnection test at board level
Choi et al. Optimal spare utilization in repairable and reliable memory cores
US5450426A (en) Continuous error detection using duplicate core memory cells
Wang et al. Reducing test time of embedded SRAMs
Jone et al. An efficient BIST method for distributed small buffers
Niggemeyer et al. A defect-tolerant DRAM employing a hierarchical redundancy scheme, built-in self-test and self-reconfiguration
Nagaraj et al. Defect analysis and a new fault model for multi-port SRAMs
KR20010075269A (en) A method for testing a memory array and a memory-based device so testable with a fault response signalizing mode for when finding predetermined correspondence between fault patterns signalizing one such fault pattern only in the form of a compressed response
JPH0263280B2 (en)
Nordholz et al. A defect-tolerant word-oriented static RAM with built-in self-test and self-reconfiguration