[go: up one dir, main page]

Chen et al., 2011 - Google Patents

Conformal Ink-Jet Printed $ C $-Band Phased-Array Antenna Incorporating Carbon Nanotube Field-Effect Transistor Based Reconfigurable True-Time Delay Lines

Chen et al., 2011

View PDF
Document ID
6169576009663915587
Author
Chen M
Pham D
Subbaraman H
Lu X
Chen R
Publication year
Publication venue
IEEE Transactions on Microwave Theory and Techniques

External Links

Snippet

We present a conformal ink-jet printed 2-bit four-element phased-array antenna (PAA) without any lithography process. Passive and active components, such as microstrip transmission lines, phase shifters, and RF power distribution networks are all developed …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. supraconductor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/16Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
    • H01Q9/26Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/24Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/05Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
    • H01L51/0504Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or swiched, e.g. three-terminal devices
    • H01L51/0508Field-effect devices, e.g. TFTs
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q23/00Aerials with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q13/00Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof

Similar Documents

Publication Publication Date Title
Chen et al. Conformal Ink-Jet Printed $ C $-Band Phased-Array Antenna Incorporating Carbon Nanotube Field-Effect Transistor Based Reconfigurable True-Time Delay Lines
Li et al. Inkjet printing of wideband stacked microstrip patch array antenna on ultrathin flexible substrates
Subbaraman et al. Inkjet-printed two-dimensional phased-array antenna on a flexible substrate
Jilani et al. Low-profile flexible frequency-reconfigurable millimetre-wave antenna for 5G applications
Han et al. Solution‐processed Ti3C2Tx MXene antennas for radio‐frequency communication
CN104685578B (en) Transparent devices are formed on the surface
Patterson et al. A 60-GHz active receiving switched-beam antenna array with integrated butler matrix and GaAs amplifiers
US7646344B2 (en) Wafer-scale phased array
Pham et al. Light Weight and Conformal 2-Bit, 1$\,\times\, $4 Phased-Array Antenna With CNT-TFT-Based Phase Shifter on a Flexible Substrate
Russer et al. Nanoelectronics-based integrate antennas
Elwi et al. Further investigation on solant–rectenna‐based flexible Hilbert‐shaped metamaterials
Pourahmadazar et al. 60 GHz antenna array for millimeter‐wave wireless sensor devices using silver nanoparticles ink mounted on a flexible polymer substrate
He et al. Research on structurally integrated phased array for wireless communications
Park et al. Folded aperture coupled patch antenna fabricated on FPC with vertically polarised end‐fire radiation for fifth‐generation millimetre‐wave massive MIMO systems
Singh et al. A comprehensive survey on millimeter wave antennas at 30/60/120 GHz: design, challenges and applications
Patterson et al. A lightweight organic X-band active receiving phased array with integrated SiGe amplifiers and phase shifters
Manzillo et al. A 60-GHz passive broadband multibeam antenna system in fused silica technology
US7583176B1 (en) Switch apparatus
Chen et al. Fully printed phased-array antenna for space communications
Kim et al. A programmable reconfigurable two-port half-loop antenna concept for mmwave wireless applications
Xie et al. A 220-GHz Planar Triangular Lattice Transmitter Array With 42.7-dBm Peak EIRP for Long-Distance High-Data-Rate Wireless Communication
Amadjikpè et al. 60-GHz switched-beam end-fire antenna module integrated with novel microstrip-to-slot transition
Johnson et al. Reconfigurable log‐periodic dipole array on textile
AliyuBabale et al. Implimentation of 4× 4 butler matrix using silver-nono instant inkjet printing technology
Yang et al. Flexible substrate technology for millimeter wave wireless power transmission