Lin et al., 2015 - Google Patents
3-D Fourier series based digital predistortion technique for concurrent dual-band envelope tracking with reduced envelope bandwidthLin et al., 2015
View PDF- Document ID
- 6498446510129831314
- Author
- Lin Y
- Quindroit C
- Jang H
- Roblin P
- Publication year
- Publication venue
- IEEE Transactions on Microwave Theory and Techniques
External Links
Snippet
In this paper, the design, implementation, and measurement results of a new digital predistortion (DPD) method for a concurrent dual-band envelope tracking (ET) power amplifier (PA) system is presented. The PA gain is represented using a set of 3-D orthogonal …
- 238000000034 method 0 title description 15
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3247—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3258—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits based on polynomial terms
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3252—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using multiple parallel paths between input and output
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0294—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0216—Continuous control
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2176—Class E amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/211—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/34—Negative-feedback-circuit arrangements with or without positive feedback
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/102—A non-specified detector of a signal envelope being used in an amplifying circuit
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/204—A hybrid coupler being used at the output of an amplifier circuit
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2201/00—Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/20—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F2203/21—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0408—Circuits with power amplifiers
- H04B2001/0425—Circuits with power amplifiers with linearisation using predistortion
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Roblin et al. | Concurrent linearization: The state of the art for modeling and linearization of multiband power amplifiers | |
| Ghannouchi et al. | Behavioral modeling and predistortion | |
| Guan et al. | Simplified dynamic deviation reduction-based Volterra model for Doherty power amplifiers | |
| Mkadem et al. | Multi-band complexity-reduced generalized-memory-polynomial power-amplifier digital predistortion | |
| Zhu et al. | Digital predistortion for envelope-tracking power amplifiers using decomposed piecewise Volterra series | |
| Zhu et al. | Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series | |
| Liu et al. | Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters | |
| Hoversten et al. | Codesign of PA, supply, and signal processing for linear supply-modulated RF transmitters | |
| Cappello et al. | A dual-band dual-output power amplifier for carrier aggregation | |
| US20150194989A1 (en) | Digital predistortion of wideband power amplifiers with reduced observation bandwidth | |
| Piazzon et al. | Effect of load modulation on phase distortion in Doherty power amplifiers | |
| Fehri et al. | Baseband equivalent Volterra series for digital predistortion of dual-band power amplifiers | |
| Younes et al. | Three-dimensional digital predistorter for concurrent tri-band power amplifier linearization | |
| Staudinger et al. | Memory fading Volterra series model for high power infrastructure amplifiers | |
| Quindroit et al. | Concurrent dual-band digital predistortion for power amplifier based on orthogonal polynomials | |
| Duffy et al. | Efficient multisignal 2–4-GHz power amplifier with power tracking | |
| Jagadheswaran et al. | A 2-$\mu {\hbox {m}} $ InGaP/GaAs Class-J Power Amplifier for Multi-Band LTE Achieving 35.8-dB Gain, 40.5% to 55.8% PAE and 28-dBm Linear Output Power | |
| Younes et al. | An accurate predistorter based on a feedforward Hammerstein structure | |
| Lin et al. | 3-D Fourier series based digital predistortion technique for concurrent dual-band envelope tracking with reduced envelope bandwidth | |
| Tafuri et al. | Memory models for behavioral modeling and digital predistortion of envelope tracking power amplifiers | |
| Moon et al. | 2-D enhanced hammerstein behavior model for concurrent dual-band power amplifiers | |
| Pham et al. | Multi-dimensional LUT-based digital predistorter for concurrent dual-band envelope tracking power amplifier linearization | |
| Li et al. | RF leakage compensation in wideband envelope tracking power amplifiers for mobile terminals | |
| Naraharisetti et al. | Quasi-exact inverse PA model for digital predistorter linearization | |
| Draxler et al. | Computationally efficient 2-D predistortion for multi-carrier envelope tracking power amplifiers |