[go: up one dir, main page]

Mikolajick et al., 2023 - Google Patents

From ferroelectric material optimization to neuromorphic devices

Mikolajick et al., 2023

View HTML
Document ID
6591856549531592350
Author
Mikolajick T
Park M
Begon‐Lours L
Slesazeck S
Publication year
Publication venue
Advanced Materials

External Links

Snippet

Due to the voltage driven switching at low voltages combined with nonvolatility of the achieved polarization state, ferroelectric materials have a unique potential for low power nonvolatile electronic devices. The competitivity of such devices is hindered by compatibility …
Continue reading at onlinelibrary.wiley.com (HTML) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • H01L27/112Read-only memory structures [ROM] and multistep manufacturing processes therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes; Multistep manufacturing processes therefor
    • H01L29/43Electrodes; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5685Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using storage elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using resistance random access memory [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L45/00Solid state devices adapted for rectifying, amplifying, oscillating or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
    • H01L45/04Bistable or multistable switching devices, e.g. for resistance switching non-volatile memory
    • H01L45/14Selection of switching materials
    • H01L45/145Oxides or nitrides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group

Similar Documents

Publication Publication Date Title
Mikolajick et al. From ferroelectric material optimization to neuromorphic devices
Kim et al. Ferroelectric transistors for memory and neuromorphic device applications
Park et al. Revival of ferroelectric memories based on emerging fluorite‐structured ferroelectrics
Mikolajick et al. The past, the present, and the future of ferroelectric memories
Goh et al. Selector-less ferroelectric tunnel junctions by stress engineering and an imprinting effect for high-density cross-point synapse arrays
Khosla et al. Integration of ferroelectric materials: an ultimate solution for next-generation computing and storage devices
Jiao et al. Ferroelectric field effect transistors for electronics and optoelectronics
Mulaosmanovic et al. Ferroelectric field-effect transistors based on HfO2: a review
Halter et al. Back-end, CMOS-compatible ferroelectric field-effect transistor for synaptic weights
Lee et al. Stable subloop behavior in ferroelectric Si-doped HfO2
Majumdar Back‐end CMOS compatible and flexible ferroelectric memories for neuromorphic computing and adaptive sensing
Xue et al. Integrated memory devices based on 2D materials
Lee et al. Neuromorphic devices based on fluorite‐structured ferroelectrics
Hwang et al. Physics, Structures, and Applications of Fluorite‐Structured Ferroelectric Tunnel Junctions
Kuo et al. CMOS-compatible fabrication of low-power ferroelectric tunnel junction for neural network applications
Du et al. High-speed switching and giant electroresistance in an epitaxial Hf0. 5Zr0. 5O2-based ferroelectric tunnel junction memristor
Byun et al. Recent advances in synaptic nonvolatile memory devices and compensating architectural and algorithmic methods toward fully integrated neuromorphic chips
Eshita et al. Ferroelectric random access memory (FRAM) devices
Park et al. A perspective on the physical scaling down of hafnia-based ferroelectrics
Lee et al. Unveiled Ferroelectricity in Well‐Known Non‐Ferroelectric Materials and Their Semiconductor Applications
Lu et al. Nonvolatile memory and artificial synapse based on the Cu/P (VDF-TrFE)/Ni organic memtranstor
Wang et al. Multi-level neuromorphic devices built on emerging ferroic materials: A review
Peng et al. Non-volatile field-effect transistors enabled by oxygen vacancy-related dipoles for memory and synapse applications
Lancaster et al. Improvement of FTJ on-current by work function engineering for massive parallel neuromorphic computing
Lee et al. Hafnium oxide-based ferroelectric devices for in-memory computing: resistive and capacitive approaches