[go: up one dir, main page]

Morrell et al., 2000 - Google Patents

Solution Synthesis of Epitaxial Rare-Earth Oxide Thin Films on Roll-Textured Nickel

Morrell et al., 2000

Document ID
6689900640428602269
Author
Morrell J
Xue Z
Paranthaman M
Chirayil T
Vallet C
Beach D
Specht E
Publication year
Publication venue
MRS Online Proceedings Library (OPL)

External Links

Snippet

Using solution chemistry, epitaxial films of rare-earth oxides of the general formula RE2O3 (where RE= Sm to Lu) were prepared on cubic-textured nickel tapes. Solutions of metal methoxyethoxides or metal acetate/methoxyethoxides in 2-methoxyethanol were used to …
Continue reading at www.cambridge.org (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L39/00Devices using superconductivity; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
    • H01L39/24Processes or apparatus peculiar to the manufacture or treatment of devices provided for in H01L39/00 or of parts thereof
    • H01L39/2419Processes or apparatus peculiar to the manufacture or treatment of devices provided for in H01L39/00 or of parts thereof the superconducting material comprising copper oxide
    • H01L39/2422Processes for depositing or forming superconductor layers
    • H01L39/2454Processes for depositing or forming superconductor layers characterised by the substrate
    • H01L39/2461Intermediate layers, e.g. for growth control
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L39/00Devices using superconductivity; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
    • H01L39/24Processes or apparatus peculiar to the manufacture or treatment of devices provided for in H01L39/00 or of parts thereof
    • H01L39/2419Processes or apparatus peculiar to the manufacture or treatment of devices provided for in H01L39/00 or of parts thereof the superconducting material comprising copper oxide
    • H01L39/2422Processes for depositing or forming superconductor layers
    • H01L39/2451Precursor deposition followed by after-treatment, e.g. oxidation

Similar Documents

Publication Publication Date Title
EP1198847B1 (en) Method of making a multi-layer superconductor article
US6270908B1 (en) Rare earth zirconium oxide buffer layers on metal substrates
US6797313B2 (en) Superconductor methods and reactors
US6537689B2 (en) Multi-layer superconductor having buffer layer with oriented termination plane
US6562761B1 (en) Coated conductor thick film precursor
US6663976B2 (en) Laminate articles on biaxially textured metal substrates
EP1334525B1 (en) Precursor solutions and methods of using same
US8227019B2 (en) High-throughput ex-situ method for rare-earth-barium-copper-oxide (REBCO) film growth
US6974501B1 (en) Multi-layer articles and methods of making same
EP1198848A1 (en) Coated conductor thick film precursor
CN1993497B (en) Method for producing highly-textured, strip-shaped, high-temperature superconductors
Paranthaman et al. Fabrication of Long Lengths of Epitaxial Buffer Layers on Biaxially Textured Nickel Substrates Using a Continuous Reel‐to‐Reel Dip‐Coating Unit
KR20070112071A (en) Polycrystalline film used for the production of coated conductors and high temperature superconductor layers
JP2002284525A (en) A solution composition containing a metal complex in which a specific ligand is coordinated to a specific metal species, a solution composition for producing a rare earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for forming a superconducting thin film.
US8642511B2 (en) Method for depositing oxide thin films on textured and curved metal surfaces
JP4891505B2 (en) Methods and compositions for making multilayer bodies
KR20110050433A (en) Composition and preparation method of rare earth metal Ba2Cu3O7-δ thin film
US8030247B2 (en) Synthesizing precursor solution enabling fabricating biaxially textured buffer layers by low temperature annealing
Morrell et al. Solution Synthesis of Epitaxial Rare-Earth Oxide Thin Films on Roll-Textured Nickel
Wesolowski et al. Nitrate-based metalorganic deposition of CeO2 on yttria-stabilized zirconia
JP3548802B2 (en) A solution composition containing a metal complex having a specific ligand coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for producing a superconducting thin film.
Benavidez et al. Chemical method to prepare YBa2Cu3O7− x (YBCO) films by dipping onto SrTi (Nb) O3 ceramics
Tomashpol'skii et al. Ferroelectric lead zirconate titanate films prepared by spray pyrolysis of carboxylate solutions
Driessen et al. Production of Y‐Ba‐Cu‐0 Superconducting Thin Films by an Aerosol Chemical Vapor Deposition Process
Wong-Ng et al. Melting investigation of the systemBaF2–BaO–½Y2O3–CuOx–H2O