[go: up one dir, main page]

Kushiyama et al., 1995 - Google Patents

An experimental 295 MHz CMOS 4K/spl times/256 SRAM using bidirectional read/write shared sense amps and self-timed pulsed word-line drivers

Kushiyama et al., 1995

Document ID
6735306048828484719
Author
Kushiyama N
Tan C
Clark R
Lin J
Perner F
Martin L
Leonard M
Coussens G
Cham K
Publication year
Publication venue
IEEE Journal of Solid-State Circuits

External Links

Snippet

An experimental 4 K word by 256 b CMOS synchronous SRAM employing read/write shared sense amplifiers and self-timed pulsed word-lines is described. The read/write shared sense amplifier allows the RAM to have 256 I/Os and the self-timed pulsed word-line scheme …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write (R-W) circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing, power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing, power reduction for memory cells of the field-effect type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output (I/O) data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write (R-W) timing or clocking circuits; Read-write (R-W) control signal generators or management
    • G11C7/227Timing of memory operations based on dummy memory elements or replica circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output (I/O) data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1048Data bus control circuits, e.g. precharging, presetting, equalising
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output (I/O) data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1072Input/output (I/O) data interface arrangements, e.g. I/O data control circuits, I/O data buffers for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output (I/O) data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/10Aspects relating to interfaces of memory device to external buses
    • G11C2207/105Aspects related to pads, pins or terminals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • G11C5/063Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design

Similar Documents

Publication Publication Date Title
Chappell et al. A 2-ns cycle, 3.8-ns access 512-kb CMOS ECL SRAM with a fully pipelined architecture
US7668035B2 (en) Memory circuits with reduced leakage power and design structures for same
US10157665B2 (en) Word-line enable pulse generator, SRAM and method for adjusting word-line enable time of SRAM
US8295099B1 (en) Dual port memory with write assist
KR100816725B1 (en) Internal voltage generator and its driving method
Rooseleer et al. A 65 nm, 850 MHz, 256 kbit, 4.3 pJ/access, ultra low leakage power memory using dynamic cell stability and a dual swing data link
CN106611622A (en) Multi-port memory, semiconductor device, and memory macro-cell
Joshi et al. A novel column-decoupled 8T cell for low-power differential and domino-based SRAM design
US8099688B2 (en) Circuit design
Apostolidis et al. Design and simulation of 6T SRAM cell architectures in 32nm technology
US6553552B1 (en) Method of designing an integrated circuit memory architecture
US6470475B2 (en) Synthesizable synchronous static RAM
Kushiyama et al. An experimental 295 MHz CMOS 4K/spl times/256 SRAM using bidirectional read/write shared sense amps and self-timed pulsed word-line drivers
Pilo et al. A 5.6-ns random cycle 144-Mb DRAM with 1.4 Gb/s/pin and DDR3-SRAM interface
CN112765926A (en) Layout method and device of SRAM
Sasaki et al. A 16-Mb CMOS SRAM with a 2.3-mu m/sup 2/single-bit-line memory cell
Balobas et al. Design and evaluation of 6T SRAM layout designs at modern nanoscale CMOS processes
US6292427B1 (en) Hierarchical sense amp and write driver circuitry for compilable memory
Chang et al. A 0.45-V 300-MHz 10T flowthrough SRAM with expanded write/read stability and speed-area-wise array for sub-0.5-V chips
Geng et al. Verification of open-source memory compiler framework with a practical PDK
Shiah et al. A 4.8 GB/s 256Mb (x16) reduced-pin-count DRAM and controller architecture (RPCA) to reduce form-factor & cost for IOT/wearable/TCON/video/AI-edge systems
Covino et al. A 2 ns zero wait state, 32 kb semi-associative L1 cache
Abdo et al. Temperature Variation Operation of Mixed-VT 3T GC-eDRAM for Low Power Applications in 2Kbit Memory Array
EP4567811A2 (en) Fast, energy efficient cmos 2p1r1w register file array using harvested data
Joshi et al. High performance SRAMs in 1.5 V, 0.18/spl mu/m partially depleted SOI technology