Ashok et al., 2019 - Google Patents
Demonstration of an analogue domain processing IC for carrier phase recovery and compensation in coherent linksAshok et al., 2019
- Document ID
- 713138434756628762
- Author
- Ashok R
- Manikandan S
- Chugh S
- Goyal S
- Kamran R
- Gupta S
- Publication year
- Publication venue
- 2019 Optical Fiber Communications Conference and Exhibition (OFC)
External Links
Snippet
Demonstration of an Analogue Domain Processing IC for Carrier Phase Recovery and
Compensation in Coherent Links Page 1 W2A.31.pdf OFC 2019 © OSA 2019
Demonstration of an analogue domain processing IC for carrier phase recovery and …
- 239000000969 carrier 0 title abstract description 14
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5053—Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
- H04B10/676—Optical arrangements in the receiver for all-optical demodulation of the input optical signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5057—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers i.e., optical receivers using an optical local oscillator
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
- H04B10/6165—Estimation of the phase of the received optical signal, phase error estimation or phase error correction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
- H04B10/556—Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
- H04B10/5561—Digital phase modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers i.e., optical receivers using an optical local oscillator
- H04B10/613—Coherent receivers i.e., optical receivers using an optical local oscillator including phase diversity, e.g., having in-phase and quadrature branches, as in QPSK coherent receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5162—Return-to-zero modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers i.e., optical receivers using an optical local oscillator
- H04B10/63—Homodyne, i.e., coherent receivers where the local oscillator is locked in frequency and phase to the carrier signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers i.e., optical receivers using an optical local oscillator
- H04B10/612—Coherent receivers i.e., optical receivers using an optical local oscillator for optical signals modulated with a format different from binary or higher-order PSK [X-PSK], e.g. QAM, DPSK, FSK, MSK, ASK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/532—Polarisation modulation, e.g. polarization switching or transmission of a single data stream on two orthogonal polarizations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/112—Line-of-sight transmission over an extended range
- H04B10/1121—One-way transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying includes continuous phase systems
- H04L27/22—Demodulator circuits; Receiver circuits
- H04L27/223—Demodulation in the optical domain
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2879461C (en) | Method and apparatus for stabilization of optical transmitter | |
| US10122467B2 (en) | Optical transmitter and control method for optical transmitter | |
| Kazovsky et al. | Homodyne phase-shift-keying systems: Past challenges and future opportunities | |
| Kikuchi | Coherent optical communications: Historical perspectives and future directions | |
| JP5365319B2 (en) | Optical transmission system | |
| US9692519B2 (en) | Level spacing for M-PAM optical systems with coherent detection | |
| Ashok et al. | Demonstration of an analogue domain processing IC for carrier phase recovery and compensation in coherent links | |
| Kikuchi | Coherent optical communication systems | |
| Li et al. | Local oscillator power adjustment-based adaptive amplification for coherent TDM-PON with wide dynamic range | |
| US20140241722A1 (en) | PDM-(M) Ask Optical Systems And Methods For Metro Network Applications | |
| van Veen et al. | 50 Gbps low complex burst mode coherent detection for time-division multiplexed passive optical networks | |
| Ashok et al. | Demonstration of a PMC-SH link using a phase recovery IC for low-power high-capacity DCIs | |
| Nakamura et al. | 30 Gbit/s 64-QAM transmission over 60 km SSMF using phase-noise cancelling technique and ISI suppression based on electronic digital processing | |
| Ibrahim et al. | Performance of 20 Gb/s quaternary intensity modulation based on binary or duobinary modulation in two quadratures with unequal amplitudes | |
| Anghan et al. | Adaptive polarization control for coherent optical links with polarization multiplexed carrier | |
| Füllner et al. | Ultra-broadband electrical signal generation and IM/DD transmission of QAM signals at symbol rates up to 90 GBd | |
| Cabrera et al. | Universal bias controller testbed for dp-iq modulators in coherent optical links | |
| Kamran et al. | Self-homodyne 16-QAM scheme for low complexity 200 Gbps data center interconnects | |
| Ashok et al. | Optical phase-locked loop based carrier phase recovery and compensation for 8-PSK coherent optical links | |
| Wree et al. | Measured noise performance for heterodyne detection of 10-Gb/s OOK and DPSK | |
| Kamran et al. | A Polarization Multiplexed Carrier based Coherent Link with Adaptive Polarization Control | |
| Seimetz | High spectral efficiency phase and quadrature amplitude modulation for optical fiber transmission—Configurations, trends, and reach | |
| Sakamoto et al. | Digital optical phase locked loop for real-time coherent demodulation of multilevel PSK/QAM | |
| Seimetz | Phase diversity receivers for homodyne detection of optical DQPSK signals | |
| Chiba et al. | 75-km SMF transmission of optical 16 QAM signal generated by a monolithic quad-parallel Mach–Zehnder optical modulator |